ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond

80   0   0.0 ( 0 )
 نشر من قبل Eiichi Egami
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the recent discovery of a dozen dusty star-forming galaxies and around 30 quasars at z>5 that are hyper-luminous in the infrared ($mu$$L_{rm IR}>10^{13}$ L$_{odot}$, where $mu$ is a lensing magnification factor), the possibility has opened up for SPICA, the proposed ESA M5 mid-/far-infrared mission, to extend its spectroscopic studies toward the epoch of reionization and beyond. In this paper, we examine the feasibility and scientific potential of such observations with SPICAs far-infrared spectrometer SAFARI, which will probe a spectral range (35-230 $mu$m) that will be unexplored by ALMA and JWST. Our simulations show that SAFARI is capable of delivering good-quality spectra for hyper-luminous infrared galaxies (HyLIRGs) at z=5-10, allowing us to sample spectral features in the rest-frame mid-infrared and to investigate a host of key scientific issues, such as the relative importance of star formation versus AGN, the hardness of the radiation field, the level of chemical enrichment, and the properties of the molecular gas. From a broader perspective, SAFARI offers the potential to open up a new frontier in the study of the early Universe, providing access to uniquely powerful spectral features for probing first-generation objects, such as the key cooling lines of low-metallicity or metal-free forming galaxies (fine-structure and H2 lines) and emission features of solid compounds freshly synthesized by Population III supernovae. Ultimately, SAFARIs ability to explore the high-redshift Universe will be determined by the availability of sufficiently bright targets (whether intrinsically luminous or gravitationally lensed). With its launch expected around 2030, SPICA is ideally positioned to take full advantage of upcoming wide-field surveys such as LSST, SKA, Euclid, and WFIRST, which are likely to provide extraordinary targets for SAFARI.

قيم البحث

اقرأ أيضاً

SPICA, the cryogenic infrared space telescope recently pre-selected for a `Phase A concept study as one of the three remaining candidates for ESAs fifth medium class (M5) mission, is foreseen to include a far-infrared polarimetric imager (SPICA-POL, now called B-BOP), which would offer a unique opportunity to resolve major issues in our understanding of the nearby, cold magnetized Universe. This paper presents an overview of the main science drivers for B-BOP, including high dynamic range polarimetric imaging of the cold interstellar medium (ISM) in both our Milky Way and nearby galaxies. Thanks to a cooled telescope, B-BOP will deliver wide-field 100-350 micron images of linearly polarized dust emission in Stokes Q and U with a resolution, signal-to-noise ratio, and both intensity and spatial dynamic ranges comparable to those achieved by Herschel images of the cold ISM in total intensity (Stokes I). The B-BOP 200 micron images will also have a factor ~30 higher resolution than Planck polarization data. This will make B-BOP a unique tool for characterizing the statistical properties of the magnetized interstellar medium and probing the role of magnetic fields in the formation and evolution of the interstellar web of dusty molecular filaments giving birth to most stars in our Galaxy. B-BOP will also be a powerful instrument for studying the magnetism of nearby galaxies and testing galactic dynamo models, constraining the physics of dust grain alignment, informing the problem of the interaction of cosmic rays with molecular clouds, tracing magnetic fields in the inner layers of protoplanetary disks, and monitoring accretion bursts in embedded protostars.
We combine observational data on a dozen independent cosmic properties at high-$z$ with the information on reionization drawn from the spectra of distant luminous sources and the cosmic microwave background (CMB) to constrain the interconnected evolu tion of galaxies and the intergalactic medium since the dark ages. The only acceptable solutions are concentrated in two narrow sets. In one of them reionization proceeds in two phases: a first one driven by Population III stars, completed at $zsim 10$, and after a short recombination period a second one driven by normal galaxies, completed at $zsim 6$. In the other set both kinds of sources work in parallel until full reionization at $zsim 6$. The best solution with double reionization gives excellent fits to all the observed cosmic histories, but the CMB optical depth is 3-$sigma$ larger than the recent estimate from the Planck data. Alternatively, the best solution with single reionization gives less good fits to the observed star formation rate density and cold gas mass density histories, but the CMB optical depth is consistent with that estimate. We make several predictions, testable with future observations, that should discriminate between the two reionization scenarios. As a byproduct our models provide a natural explanation to some characteristic features of the cosmic properties at high-$z$, as well as to the origin of globular clusters.
The source responsible for reionizing the universe at z > 6 remains uncertain. While an energetically adequate population of star-forming galaxies may be in place, it is unknown whether a large enough fraction of their ionizing radiation can escape i nto the intergalactic medium. Attempts to measure this escape-fraction in intensely star-forming galaxies at lower redshifts have largely yielded upper limits. In this paper we present new HST COS and archival FUSE far-UV spectroscopy of a sample of eleven Lyman Break Analogs (LBAs), a rare population of local galaxies that strongly resemble the high-z Lyman Break galaxies. We combine these data with SDSS optical spectra and Spitzer photometry. We also analyze archival FUSE observations of fifteen typical UV-bright local starbursts. We find evidence of small covering factors for optically-thick neutral gas in 3 cases. This is based on two independent pieces of evidence: a significant residual intensity in the cores of the strongest interstellar absorption-lines tracing neutral gas and a small ratio of extinction-corrected H-alpha to UV plus far-IR luminosities. These objects represent three of the four LBAs that contain a young, very compact (~100pc), and highly massive (~10^9 Mo) dominant central object (DCO). These three objects also differ from the other galaxies in showing a significant amount of blueshifted Ly-alpha emission, which may be related to the low covering factor of neutral gas. All four LBAs with DCOs in our sample show extremely high velocity outflows of interstellar gas, with line centroids blueshifted by about 700km/s and maximum outflow velocities reaching at least 1500km/s. We show that these properties are consistent with an outflow driven by a powerful starburst that is exceptionally compact. We speculate that such extreme feedback may be required to enable the escape of ionizing radiation from star forming galaxies.
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multi-wavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcminute-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 $mu$m. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at $z$ > 8 to be $log rho_{rm UV} = 27.4^{+0.2}_{-1.2}$ erg s$^{-1}$ Hz$^{-1}$ Mpc$^{-3}$ $(1sigma)$. This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point source detection level in current surveys.
The epoch of reionization (6 < z < 10) marks the period in our universe when the first large galaxies grew to fruition, and began to affect the universe around them. Massive stars, and potentially accreting supermassive black holes, filled the univer se with ionizing radiation, burning off the haze of neutral gas that had filled the intergalactic medium (IGM) since recombination (z~1000). The evolution of this process constrains key properties of these earliest luminous sources, thus observationally constraining reionization is a key science goal for the next decade. The measurement of Lyman-alpha emission from photometrically-identified galaxies is a highly constraining probe of reionization, as a neutral IGM will resonantly scatter these photons, reducing detectability. While significant work has been done with 8-10m telescopes, these observations require extremely large telescopes (ELTs); the flux limits available from todays 10m class telescopes are sufficient for only the brightest known galaxies (m < 26). Ultra-deep surveys with the Giant Magellan Telescope (GMT) and Thirty Meter Telescope (TMT) will be capable of detecting Lyman-alpha emission from galaxies 2-3 magnitudes fainter than todays deepest surveys. Wide-field fiber spectroscopy on the GMT combined with narrow-field AO-assisted slit spectroscopy on the TMT will be able to probe the expected size of ionized bubbles throughout the epoch of reionization, following up degree scale deep imaging surveys with the Wide Field Infrared Space Telescope. These data will provide the first resolved Lyman-alpha-based maps of the ionized intergalactic medium throughout the epoch of reionization, constraining models of both the temporal and spatial evolution of this phase change.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا