ﻻ يوجد ملخص باللغة العربية
In this work, a complete error analysis is presented for fully discrete solutions of the subdiffusion equation with a time-dependent diffusion coefficient, obtained by the Galerkin finite element method with conforming piecewise linear finite elements in space and backward Euler convolution quadrature in time. The regularity of the solutions of the subdiffusion model is proved for both nonsmooth initial data and incompatible source term. Optimal-order convergence of the numerical solutions is established using the proven solution regularity and a novel perturbation argument via freezing the diffusion coefficient at a fixed time. The analysis is supported by numerical experiments.
For the first time, we develop a convergent numerical method for the llinear integral equation derived by M.M. Lavrentev in 1964 with the goal to solve a coefficient inverse problem for a wave-like equation in 3D. The data are non overdetermined. Con
We have derived a fractional Fokker-Planck equation for subdiffusion in a general space-and- time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a gen
Sticky Brownian motion is the simplest example of a diffusion process that can spend finite time both in the interior of a domain and on its boundary. It arises in various applications such as in biology, materials science, and finance. This article
In this work, we present numerical analysis for a distributed optimal control problem, with box constraint on the control, governed by a subdiffusion equation which involves a fractional derivative of order $alphain(0,1)$ in time. The fully discrete
A posteriori error analysis is a technique to quantify the error in particular simulations of a numerical approximation method. In this article, we use such an approach to analyze how various error components propagate in certain moving boundary prob