ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Origins of Earths Nitrogen: Astronomical Observations of Nitrogen-bearing Organics in Protostellar Environments

144   0   0.0 ( 0 )
 نشر من قبل Thomas Rice
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is not known whether the original carriers of Earths nitrogen were molecular ices or refractory dust. To investigate this question, we have used data and results of Herschel observations towards two protostellar sources: the high-mass hot core of Orion KL, and the low-mass protostar IRAS 16293-2422. Towards Orion KL, our analysis of the molecular inventory of Crockett et al. (2014) indicates that HCN is the organic molecule that contains by far the most nitrogen, carrying $74_{-9}^{+5}%$ of nitrogen-in-organics. Following this evidence, we explore HCN towards IRAS 16293-2422, which we consider a solar analog. Towards IRAS 16293-2422, we have reduced and analyzed Herschel spectra of HCN, and fit these observations against jump abundance models of IRAS 16293-2422s protostellar envelope. We find an inner-envelope HCN abundance $X_{textrm{in}} = 5.9pm0.7 times 10^{-8}$ and an outer-envelope HCN abundance $X_{textrm{out}} = 1.3 pm 0.1 times 10^{-9}$. We also find the sublimation temperature of HCN to be $T_{textrm{jump}} = 71 pm 3$~K; this measured $T_{textrm{jump}}$ enables us to predict an HCN binding energy $E_{textrm{B}}/k = 3840 pm 140$~K. Based on a comparison of the HCN/H2O ratio in these protostars to N/H2O ratios in comets, we find that HCN (and, by extension, other organics) in these protostars is incapable of providing the total bulk N/H2O in comets. We suggest that refractory dust, not molecular ices, was the bulk provider of nitrogen to comets. However, interstellar dust is not known to have 15N enrichment, while high 15N enrichment is seen in both nitrogen-bearing ices and in cometary nitrogen. This may indicate that these 15N-enriched ices were an important contributor to the nitrogen in planetesimals and likely to the Earth.



قيم البحث

اقرأ أيضاً

Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies have generally higher D/H ratios and show greater D/H variation when compare d to D/H in solar system water. We propose this difference arises at least in part due to 1) the availability of additional chemical fractionation pathways for organics beyond that for water, and 2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH$_2$D$^+$/CH$_3^+$. We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from $sim20-40$ AU, CH$_4$ can reach $rm{D/Hsim2times10^{-3}}$, while D/H in CH$_3$OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.
We present the results of a suite of numerical simulations designed to explore the origin of the angular momenta of protostellar cores. Using the hydrodynamic grid code emph{Athena} with a sink implementation, we follow the formation of protostellar cores and protostars (sinks) from the subvirial collapse of molecular clouds on larger scales to investigate the range and relative distribution of core properties. We find that the core angular momenta are relatively unaffected by large-scale rotation of the parent cloud; instead, we infer that angular momenta are mainly imparted by torques between neighboring mass concentrations and exhibit a log-normal distribution. Our current simulation results are limited to size scales $sim 0.05$~pc ($sim 10^4 rm AU$), but serve as first steps toward the ultimate goal of providing initial conditions for higher-resolution studies of core collapse to form protoplanetary disks.
The dominant reservoirs of elemental nitrogen in protoplanetary disks have not yet been observationally identified. Likely candidates are HCN, NH$_3$ and N$_2$. The relative abundances of these carriers determine the composition of planetesimals as a function of disk radius due to strong differences in their volatility. A significant sequestration of nitrogen in carriers less volatile than N$_2$ is likely required to deliver even small amounts of nitrogen to the Earth and potentially habitable exo-planets. While HCN has been detected in small amounts in inner disks ($<10$ au), so far only relatively insensitive upper limits on inner disk NH$_3$ have been obtained. We present new Gemini-TEXES high resolution spectroscopy of the 10.75 $mu$m band of warm NH$_3$, and use 2-dimensional radiative transfer modeling to improve previous upper limits by an order of magnitude to $rm [NH_3/H_{nuc}]<10^{-7}$ at 1 au. These NH$_3$ abundances are significantly lower than those typical for ices in circumstellar envelopes ($[{rm NH_3/H_{nuc}}]sim 3times 10^{-6}$). We also consistently retrieve the inner disk HCN gas abundances using archival Spitzer spectra, and derive upper limits on the HCN ice abundance in protostellar envelopes using archival ground-based 4.7 $mu$m spectroscopy ([HCN$_{rm ice}$]/[H$_2$O$_{rm ice}$]$<1.5-9$%). We identify the NH$_3$/HCN ratio as an indicator of chemical evolution in the disk, and use this ratio to suggest that inner disk nitrogen is efficiently converted from NH$_3$ to N$_2$, significantly increasing the volatility of nitrogen in planet-forming regions.
(Abridged) The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment in the solids. Several mechanisms have been proposed to explain the variations, including chemical fractionation. However, observational results that constrain the fractionation models are scarce. While there is evidence of 15N-enrichment in prestellar cores, it is unclear how the signature evolves into the protostellar phases. Our aim is to measure the 14N/15N ratio around three nearby, embedded low-to-intermediate-mass protostars. Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of H13CN, HC15N, HN13C, and H15NC transitions was observed with the APEX telescope. The 14N/15N ratios were derived from the integrated intensities assuming a standard 12C/13C ratio. The assumption of optically thin emission was verified using radiative transfer modeling and hyperfine structure fitting. Two sources, IRAS 16293A and R CrA IRS7B, show 15N-enrichment by a factor of around 1.5-2.5 in both HCN and HNC with respect to the solar composition. Solar composition cannot be excluded for the third source, OMC-3 MMS6. Furthermore, there are indications of a trend toward increasing 14N/15N ratios with increasing outer envelope temperature. The enhanced 15N abundances in HCN and HNC found in two Class~0 sources (14N/15N of 160-290) and the tentative trend toward a temperature-dependent 14N/15N ratio are consistent with the chemical fractionation scenario, but 14N/15N ratios from additional tracers are indispensable for testing the models. Spatially resolved observations are needed to distinguish between chemical fractionation and isotope-selective photochemistry.
Photoionization fronts play a dominant role in many astrophysical environments, but remain difficult to achieve in a laboratory experiment. Recent papers have suggested that experiments using a nitrogen medium held at ten atmospheres of pressure that is irradiated by a source with a radiation temperature of T$_{rm R}sim$ 100 eV can produce viable photoionization fronts. We present a suite of one-dimensional numerical simulations using the helios multi-material radiation hydrodynamics code that models these conditions and the formation of a photoionization front. We study the effects of varying the atomic kinetics and radiative transfer model on the hydrodynamics and ionization state of the nitrogen gas, finding that more sophisticated physics, in particular a multi-angle long characteristic radiative transfer model and a collisional-radiative atomics model, dramatically changes the atomic kinetic evolution of the gas. A photoionization front is identified by computing the ratios between the photoionization rate, the electron impact ionization rate, and the total recombination rate. We find that due to the increased electron temperatures found using more advanced physics that photoionization fronts are likely to form in our nominal model. We report results of several parameter studies. In one of these, the nitrogen pressure is fixed at ten atmospheres and varies the source radiation temperature while another fixes the temperature at 100 eV and varied the nitrogen pressure. Lower nitrogen pressures increase the likelihood of generating a photoionization front while varying the peak source temperature has little effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا