ترغب بنشر مسار تعليمي؟ اضغط هنا

Inflating to the Weak Scale

83   0   0.0 ( 0 )
 نشر من قبل Eric Kuflik
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new solution to the hierarchy problem, where the Higgs mass is at its observed electroweak value because such a patch inflates the most in the early universe. If the Higgs mass depends on a field undergoing quantum fluctuations during inflation, then inflation will fill the universe with the Higgs mass that corresponds to the largest vacuum energy. The hierarchy problem is solved if the maximum vacuum energy occurs for the observed Higgs mass. We demonstrate this notion with a proof-of-principle model containing an axion, a modulus field and the Higgs, and show that inflation can be responsible for the weak scale.

قيم البحث

اقرأ أيضاً

We explore the prospects for bounding the weak scale using the weak gravity conjecture (WGC), addressing the hierarchy problem by violating the expectations of effective field theory. Building on earlier work by Cheung and Remmen, we construct models in which a super-extremal particle satisfying the electric WGC for a new Abelian gauge group obtains some of its mass from the Higgs, setting an upper bound on the weak scale as other UV-insensitive parameters are held fixed. Avoiding undue sensitivity of the weak scale to the parameters entering the bound implies that the super-extremal particle must lie at or below the weak scale. While the magnetic version of the conjecture implies additional physics entering around the same scale, we demonstrate that this need not correspond to a cutoff for the Higgs potential or otherwise trivialize the bound. We stress that linking the WGC to the weak scale necessarily involves new light particles coupled to the Higgs, implying a variety of experimentally accessible signatures including invisible Higgs decays and radiative corrections in the electroweak sector. These models also give rise to natural dark matter candidates, providing additional paths to discovery. In particular, collective effects in the dark matter plasma may provide a telltale sign of the Abelian gauge group responsible for bounding the weak scale.
In this letter we show that for observables which involve the measurement of weak charge in final states in hadronic collisions, the standard parton model picture breaks down at scales well above the weak scale due to nonfactorizable electroweak corr ections at leading order in the power expansion. This implies that the resummation of these factorization-violating logarithms, which start at order $alpha_s^2, alpha_W^2 log^4(Q^2/M_W^2)$, cannot be accomplished solely by following standard DGLAP evolution equations; other techniques will be needed to systematically sum large logarithms.
We propose a framework in which Weinbergs anthropic explanation of the cosmological constant problem also solves the hierarchy problem. The weak scale is selected by chiral dynamics that controls the stabilization of an extra dimension. When the Higg s vacuum expectation value is close to a fermion mass scale, the radius of an extra dimension becomes large, and develops an enhanced number of vacua available to scan the cosmological constant down to its observed value. At low energies, the radion necessarily appears as an unnaturally light scalar, in a range of masses and couplings accessible to fifth-force searches as well as scalar dark matter searches with atomic clocks and gravitational-wave detectors. The fermion sector that controls the size of the extra dimension consists of a pair of electroweak doublets and several singlets. These leptons satisfy approximate mass relations related to the weak scale and are accessible to the LHC and future colliders.
209 - Jean Iliopoulos 2013
These are the notes of a set of four lectures which I gave at the 2012 CERN Summer School of Particle Physics. They cover the basic ideas of gauge symmetries and the phenomenon of spontaneous symmetry breaking which are used in the construction of the Standard Model of the Electro-Weak Interactions.
In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the mu term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare mu and B mu terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value mu ~ 10^2 - 10^3 GeV when the hidden sector scale of supersymmetry breaking is F^(1/2) ~ 10^(8.5) GeV. Further, the B mu problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f_a ~ M_(GUT) * mu / L, where L ~ 10^5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio mu / L ~ M_(GUT)/M_(pl) ~ 10^(-3). We find f_a ~ 10^12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10^1 - 10^2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10^2 - 10^3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tan(beta) ~ 30 +/- 7.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا