ﻻ يوجد ملخص باللغة العربية
We study the production of photons in a model of three bosonic atomic modes non-linearly coupled to a cavity mode. In absence of external driving and dissipation, the energy levels at different photon numbers assemble into the steps of an energy staircase which can be employed as guidance for preparing multi-photon states. We consider adiabatic photon production, driving the system through a sequence of Landau-Zener transitions in the presence of external coherent light pumping. We also analyse the non-equilibrium dynamics of the system resulting from the competition of the sudden switch of coherent photon pumping and cavity photon losses, and we find that the system approaches a plateau with a given number of photons, which becomes metastable upon increasing the rate of photon pumping. We discuss the sensitivity of the time scales for the onset of this metastable behaviour to system parameters and predict the value of photons attained, solving the driven-dissipative dynamics including three-body correlations between light and matter degrees of freedom.
Stimulated by the experimental realization of spin-dependent tunneling via gradient magnetic field [Phys. Rev. Lett. 111, 225301 (2013); Phys. Rev. Lett. 111, 185301 (2013)], we investigate dynamics of Bloch oscillations and Landau-Zener tunneling of
We explore the asymmetric sequential Landau-Zener (LZ) dynamics in an ensemble of interacting Bose condensed two-level atoms coupled with a cavity field. Assuming the couplings between all atoms and the cavity field are identical, the interplay betwe
Ultra-cold atoms in optical lattices provide an ideal platform for exploring many-body physics of a large system arising from the coupling among a series of small identical systems whose few-body dynamics is exactly solvable. Using Landau-Zener (LZ)
We investigate the three-level Dicke model, which describes a fundamental class of light-matter systems. We determine the phase diagram in the presence of dissipation, which we assume to derive from photon loss. Utilizing both analytical and numerica
We study Landau-Zener transitions in a fermionic dissipative environment where a two-level (up and down states) system is coupled to two metallic leads kept with different chemical potentials at zero temperature. The dynamics of the system is simulat