ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability and the Gauge Problem in Non-Perturbative Cosmology

76   0   0.0 ( 0 )
 نشر من قبل Anna Ijjas
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we describe the first steps towards fully non-perturbative cosmology. We explain why the conventional methods used by cosmologists based on the ADM formulation are generally inadequate for this purpose and why it is advantageous instead to adapt the harmonic formulation pioneered and utilized in mathematical and numerical relativity. Here we focus on using this approach to evaluating the linear mode stability in homogeneous and nearly homogeneous backgrounds and devising a valid scheme and diagnostics for numerical computation. We also briefly touch on the relevance of these methods for extracting cosmological observables from non-perturbative simulations.



قيم البحث

اقرأ أيضاً

Why is the Universe so homogeneous and isotropic? We summarize a general study of a $gamma$-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The aniso tropic matter sector is implemented as a $j$-form (field-strength level), where $j,in,{1,3}$, and the spaces studied are Bianchi space-times of solvable type. Walds no-hair theorem is extended to include the $j$-form case. We highlight three new self-similar space-times: the Edge, the Rope and Wonderland. The latter solution is so far found to exist in the physical state space of types I,II, IV, VI$_0$, VI$_h$, VII$_0$ and VII$_h$, and is a global attractor in I and V. The stability analysis of the other types has not yet been performed. This paper is a summary of ~[1], with some remarks towards new results which will be further laid out in upcoming work.
305 - Xian Gao 2014
The simplest possible classical model leading to a cosmological bounce is examined in the light of the non-Gaussianities it can generate. Concentrating solely on the transition between contraction and expansion, and assuming initially purely Gaussian perturbations at the end of the contracting phase, we find that the bounce acts as a source such that the resulting value for the post-bounce $f_{mathrm{NL}}$ may largely exceed all current limits, to the point of potentially casting doubts on the validity of the perturbative expansion. We conjecture that if one can assume that the non-Gaussianity production depends only on the bouncing behavior of the scale factor and not on the specifics of the model examined, then many realistic models in which a nonsingular classical bounce takes place could exhibit a generic non-Gaussianity excess problem that would need to be addressed for each case.
We study a cosmological scenario in which inflation is preceded by a bounce. In this scenario, the primordial singularity, one of the major shortcomings of inflation, is replaced by a non-singular bounce, prior to which the universe undergoes a phase of contraction. Our starting point is the bouncing cosmology investigated in Falciano et al. (2008), which we complete by a detailed study of the transfer of cosmological perturbations through the bounce and a discussion of possible observational effects of bouncing cosmologies. We focus on a symmetric bounce and compute the evolution of cosmological perturbations during the contracting, bouncing and inflationary phases. We derive an expression for the Mukhanov-Sasaki perturbation variable at the onset of the inflationary phase that follows the bounce. Rather than being in the Bunch-Davies vacuum, it is found to be in an excited state that depends on the time scale of the bounce. We then show that this induces oscillations superimposed on the nearly scale-invariant primordial spectra for scalar and tensor perturbations. We discuss the effects of these oscillations in the cosmic microwave background and in the matter power spectrum. We propose a new way to indirectly measure the spatial curvature energy density parameter in the context of this model.
83 - James B. Hartle 2021
Lectures by the author at the 1986 Cargese summer school modestly corrected and uploaded for greater accessibility. Some of the authors views on the quantum mechanics of cosmology have changed from those presented here but may still be of historical interest. The material on the Born-Oppenheimer approximation for solving the Wheeler-DeWitt equation and the work on the classical geometry limit and the approximation of quantum field theory in curved spacetime are still of interest and of use.
The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the Renyi relative entropy formula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا