ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Moderation of Online Discussions via Interpretable Neural Models

79   0   0.0 ( 0 )
 نشر من قبل Andrej \\v{S}vec
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Growing amount of comments make online discussions difficult to moderate by human moderators only. Antisocial behavior is a common occurrence that often discourages other users from participating in discussion. We propose a neural network based method that partially automates the moderation process. It consists of two steps. First, we detect inappropriate comments for moderators to see. Second, we highlight inappropriate parts within these comments to make the moderation faster. We evaluated our method on data from a major Slovak news discussion platform.



قيم البحث

اقرأ أيضاً

Having a sequence-to-sequence model which can operate in an online fashion is important for streaming applications such as Voice Search. Neural transducer is a streaming sequence-to-sequence model, but has shown a significant degradation in performan ce compared to non-streaming models such as Listen, Attend and Spell (LAS). In this paper, we present various improvements to NT. Specifically, we look at increasing the window over which NT computes attention, mainly by looking backwards in time so the model still remains online. In addition, we explore initializing a NT model from a LAS-trained model so that it is guided with a better alignment. Finally, we explore including stronger language models such as using wordpiece models, and applying an external LM during the beam search. On a Voice Search task, we find with these improvements we can get NT to match the performance of LAS.
Argumentation is a type of discourse where speakers try to persuade their audience about the reasonableness of a claim by presenting supportive arguments. Most work in argument mining has focused on modeling arguments in monologues. We propose a comp utational model for argument mining in online persuasive discussion forums that brings together the micro-level (argument as product) and macro-level (argument as process) models of argumentation. Fundamentally, this approach relies on identifying relations between components of arguments in a discussion thread. Our approach for relation prediction uses contextual information in terms of fine-tuning a pre-trained language model and leveraging discourse relations based on Rhetorical Structure Theory. We additionally propose a candidate selection method to automatically predict what parts of ones argument will be targeted by other participants in the discussion. Our models obtain significant improvements compared to recent state-of-the-art approaches using pointer networks and a pre-trained language model.
We propose an extension to neural network language models to adapt their prediction to the recent history. Our model is a simplified version of memory augmented networks, which stores past hidden activations as memory and accesses them through a dot product with the current hidden activation. This mechanism is very efficient and scales to very large memory sizes. We also draw a link between the use of external memory in neural network and cache models used with count based language models. We demonstrate on several language model datasets that our approach performs significantly better than recent memory augmented networks.
73 - Hanjie Chen , Yangfeng Ji 2019
Sentiment analysis has been widely used by businesses for social media opinion mining, especially in the financial services industry, where customers feedbacks are critical for companies. Recent progress of neural network models has achieved remarkab le performance on sentiment classification, while the lack of classification interpretation may raise the trustworthy and many other issues in practice. In this work, we study the problem of improving the explainability of existing sentiment classifiers. We propose two data augmentation methods that create additional training examples to help improve model explainability: one method with a predefined sentiment word list as external knowledge and the other with adversarial examples. We test the proposed methods on both CNN and RNN classifiers with three benchmark sentiment datasets. The model explainability is assessed by both human evaluators and a simple automatic evaluation measurement. Experiments show the proposed data augmentation methods significantly improve the explainability of both neural classifiers.
The neural text generation suffers from the text degeneration issue such as repetition. Traditional stochastic sampling methods only focus on truncating the unreliable tail of the distribution, and do not address the head part, which we show might co ntain tedious or even repetitive candidates with high probability that lead to repetition loops. They also do not consider the issue that human text does not always favor high-probability words. Inspired by these, in this work we propose a heuristic sampling method. We propose to use interquartile range of the predicted distribution to determine the head part, then permutate and rescale the head with inverse probability. This aims at decreasing the probability for the tedious and possibly repetitive candidates with higher probability, and increasing the probability for the rational but more surprising candidates with lower probability. The proposed algorithm provides a reasonable permutation on the predicted distribution which enhances diversity without compromising rationality of the distribution. We use pre-trained language model to compare our algorithm with traditional methods. Results show that our algorithm can effectively increase the diversity of generated samples while achieving close resemblance to human text.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا