ﻻ يوجد ملخص باللغة العربية
Numerical optimization is an important tool in the field of computational physics in general and in nano-optics in specific. It has attracted attention with the increase in complexity of structures that can be realized with nowadays nano-fabrication technologies for which a rational design is no longer feasible. Also, numerical resources are available to enable the computational photonic material design and to identify structures that meet predefined optical properties for specific applications. However, the optimization objective function is in general non-convex and its computation remains resource demanding such that the right choice for the optimization method is crucial to obtain excellent results. Here, we benchmark five global optimization methods for three typical nano-optical optimization problems: removed{downhill simplex optimization, the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, particle swarm optimization, differential evolution, and Bayesian optimization} added{particle swarm optimization, differential evolution, and Bayesian optimization as well as multi-sta
Numerical simulation of complex optical structures enables their optimization with respect to specific objectives. Often, optimization is done by multiple successive parameter scans, which are time consuming and computationally expensive. We employ h
We propose the combination of forward shape derivatives and the use of an iterative inversion scheme for Bayesian optimization to find optimal designs of nanophotonic devices. This approach widens the range of applicability of Bayesian optmization to
We present numerical studies of two photonic crystal membrane microcavities, a short line-defect cavity with relatively low quality ($Q$) factor and a longer cavity with high $Q$. We use five state-of-the-art numerical simulation techniques to comput
Randomized benchmarking (RB) is a widely used method for estimating the average fidelity of gates implemented on a quantum computing device. The stochastic error of the average gate fidelity estimated by RB depends on the sampling strategy (i.e., how
Optical scatterometry is a method to measure the size and shape of periodic micro- or nanostructures on surfaces. For this purpose the geometry parameters of the structures are obtained by reproducing experimental measurement results through numerica