ترغب بنشر مسار تعليمي؟ اضغط هنا

Far-infrared emission of massive stars

106   0   0.0 ( 0 )
 نشر من قبل Ralf Siebenmorgen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of the analysis of a sample of 22 stars of spectral types from O7 to B5 and luminosity classes I-V for which Spitzer/IRS spectra are available. The IRS spectra of these stars are examined for signs of excess infrared (IR) emission by comparison with stellar atmospheric spectra. We find that the spectra of half of the studied stars are dominated by excess emission in the far-IR, including all six super- and bright giants. In order to examine the origin of the far-IR excess, we supplement the Spitzer data with optical high-resolution echelle spectroscopy ($lambda/Delta lambda sim 10^5$), near-IR high-contrast coronagraphic imaging taken with the SPHERE instrument at VLT with a spatial resolution of 0.05, and WISE and Herschel photometry. In the optical region, we detect various absorption and emission lines (H$alpha$, CIII, and NIII) irrespective of the far-IR excess. Pfund($alpha$) and Humphrey($alpha$) lines are observed at the same time as the far-IR excess. These lines are stronger in stars with far-IR excess than in stars without excess. A scattered-light disk in the central r < 2.5 region of the far-IR excess stars HD149404, HD151804, and HD154368 can be excluded from H band imaging down to a 1$sigma$ contrast of $F(r)/F_{*} sim 10^{-6}$. The far-IR excess is fit either by a free-free component from ionized gas as for the winds of hot stars or a large (1pc) circumstellar dust shell. The putative dust envelopes required to explain the excess have a visual extinction as low as a few hundred $mu$-mag.



قيم البحث

اقرأ أيضاً

Massive Population II galaxies undergoing the first phase of vigorous star formation after the initial Population III stage should have high energy densities and silicate-rich interstellar dust. We have modeled the resulting far-infrared spectral ene rgy distributions (SEDs), demonstrating that they are shifted substantially to bluer (`warmer) wavelengths relative to the best fitting ones at z ~ 3, and with strong outputs in the 10 - 40 micron range. When combined with a low level of emission by carbon dust, their SEDs match that of Haro 11, a local moderately-low-metallicity galaxy undergoing a very young and vigorous starburst that is likely to approximate the relevant conditions in young Population II galaxies. We expect to see similar SEDs at high redshifts (z >= 5) given the youth of galaxies at this epoch. In fact, we find a progression with redshift in observed galaxy SEDs, from those resembling local ones at 2 < z < 4 to a closer resemblance with Haro 11 at 5 < z < 7. In addition to the insight on conditions in high redshift galaxies, this result implies that estimates of the total infrared luminosities at z ~ 6 based on measurements near lambda ~ 1 mm can vary by factors of 2 - 4, depending on the SED template used. Currently popular modified blackbodies or local templates can result in significant underestimates compared with the preferred template based on the SED of Haro 11.
Determining the Galactic distribution and numbers of massive stars, such as Wolf-Rayet stars (WRs), is hampered by intervening Galactic or local circumstellar dust obscuration. In order to probe such regions of the Galaxy we can use infrared observat ions, which provide a means for finding such hidden populations through the dust. The availability of both 2MASS and Spitzer/GLIMPSE large-scale survey data provides infrared colours from 1.25 to 8$mu$m for a large fraction of the inner Galactic plane. In 2005 we initiated a pilot study of the combined set of infrared colours for two GLIMPSE fields and showed that WRs typically occupy a sparsely populated region of the colour space. We followed up 42 of our WR candidates spectroscopically in the near-infrared, and with limited additional observations of some of these candidates in the optical. Six new WRs, four late-type WN and two late-type WC stars, were discovered as a result. Of the remaining $sim$86% of the sample, five appear to be O-type stars. 21 stars are likely of type Be, and 10 stars appear to be of late-type, or possibly young stellar objects, which have contaminated the infrared color space. The survey is generally unbiased towards clusters or field stars, and the new WRs found are in both the field and in and around the RCW 49 region (including cluster Westerlund 2). In this work, and in our other recent work, we show that the infrared broad-band colours to be the most efficient means of identifying (particularly, dust-obscured) candidate massive stars, notably WRs.
Context: The Red MSX Source (RMS) survey is a multi-wavelength campaign of follow-up observations of a colour-selected sample of candidate massive young stellar objects (MYSOs) in the galactic plane. This survey is returning the largest well-selected sample of MYSOs to date, while identifying other dust contaminant sources with similar mid-infrared colours including a large number of new ultra-compact (UC)HII regions. Aims:To measure the far-infrared (IR) flux, which lies near the peak of the spectral energy distribution (SED) of MYSOs and UCHII regions, so that, together with distance information, the luminosity of these sources can be obtained. Methods:Less than 50% of RMS sources are associated with IRAS point sources with detections at 60 micron and 100 micron, though the vast majority are visible in Spitzer MIPSGAL or IRAS Galaxy Atlas (IGA) images. However, standard aperture photometry is not appropriate for these data due to crowding of sources and strong spatially variable far-IR background emission in the galactic plane. A new technique using a 2-dimensional fit to the background in an annulus around each source is therefore used to obtain far-IR photometry for young RMS sources. Results:Far-IR fluxes are obtained for a total of 1113 RMS candidates identified as young sources. Of these 734 have flux measurements using IGA 60 micron and 100 micron images and 724 using MIPSGAL 70 micron images, with 345 having measurements in both data sets.
Protoplanetary disks around young stars are the sites of planet formation. While the dust mass can be estimated using standard methods, determining the gas mass - and thus the amount of material available to form giant planets - has proven to be very difficult. Hydrogen deuteride (HD) is a promising alternative to the commonly-used gas mass tracer, CO. We aim to examine the robustness of HD as tracer of the disk gas mass, specifically the effect of gas mass on the HD FIR emission and its sensitivity to the vertical structure. Deuterium chemistry reactions relevant for HD were implemented in the thermochemical code DALI and models were run for a range of disk masses and vertical structures. The HD J=1-0 line intensity depends directly on the gas mass through a sublinear power law relation with a slope of ~0.8. Assuming no prior knowledge about the vertical structure of a disk and using only the HD 1-0 flux, gas masses can be estimated to within a factor of 2 for low mass disks (M$_{rm disk} < 10^{-3}$ M$_odot$). For more massive disks, this uncertainty increases to more than an order of magnitude. Adding the HD 2-1 line or independent information about the vertical structure can reduce this uncertainty to a factor of ~3 for all disk masses. For TW Hya, using the radial and vertical structure from Kama et al. 2016b the observations constrain the gas mass to $6cdot10^{-3}$ M$_odot$ < M$_{rm disk} < 9cdot10^{-3}$ M$_odot$. Future observations require a 5$sigma$ sensitivity of $1.8cdot10^{-20}$ W m$^{-2}$ ($2.5cdot10^{-20}$ W m$^{-2}$) and a spectral resolving power R > 300 (1000) to detect HD 1-0 (HD 2-1) for all disk masses above $10^{-5}$ M$_odot$ with a line-to-continuum ratio > 0.01. These results show that HD can be used as an independent gas mass tracer with a relatively low uncertainty and should be considered as an important science goal for future FIR missions.
At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic s tudies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, OH, and H$_{2}$O) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. The atomic and molecular FIR (60-190 $rm mu m$) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. [Abridged Abstract]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا