ﻻ يوجد ملخص باللغة العربية
We study inhomogeneous chiral phases in nuclear matter using a hadronic model with the parity doublet structure. With an extended ansatz for the dual chiral density wave off the chiral limit, we numerically determine the phase structure. A new type of dual chiral density wave where the condensate has nonvanishing space average is confirmed and it comes to occupy a wide range of low density region as the chiral invariant mass parameter is lowered.
We study the Dual Chiral Density Wave (DCDW) in nuclear matter using a hadronic model with the parity doublet structure. We first extend the ordinary DCDW ansatz so as to incorporate the effect of an explicit chiral symmetry breaking. Then via numeri
Properties of cold nuclear matter are studied within a generalized Nambu-Jona-Lasinio model formulated on the level of constituent nucleons. The model parameters are chosen to reproduce simultaneously the observed nucleon and pion masses in vacuum as
It is shown that the spin polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasinio-type model as a low energy effective theory of quantum chromodyn
Background: It has been proposed that the azimuthal distributions of heavy flavor quark-antiquark pairs may be modified in the medium of a heavy-ion collision. Purpose: This work tests this proposition through next-to-leading order (NLO) calculations
It is shown that the spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in the high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at hig