ترغب بنشر مسار تعليمي؟ اضغط هنا

The delay of shock breakout due to circumstellar material seen in most Type II Supernovae

58   0   0.0 ( 0 )
 نشر من قبل Francisco Forster Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type II supernovae (SNe) originate from the explosion of hydrogen-rich supergiant massive stars. Their first electromagnetic signature is the shock breakout, a short-lived phenomenon which can last from hours to days depending on the density at shock emergence. We present 26 rising optical light curves of SN II candidates discovered shortly after explosion by the High cadence Transient Survey (HiTS) and derive physical parameters based on hydrodynamical models using a Bayesian approach. We observe a steep rise of a few days in 24 out of 26 SN II candidates, indicating the systematic detection of shock breakouts in a dense circumstellar matter consistent with a mass loss rate $dot{M} > 10^{-4} M_odot yr^{-1}$ or a dense atmosphere. This implies that the characteristic hour timescale signature of stellar envelope SBOs may be rare in nature and could be delayed into longer-lived circumstellar material shock breakouts in most Type II SNe.



قيم البحث

اقرأ أيضاً

Shock breakout is the brightest radiative phenomenon in a supernova (SN) but is difficult to be observed owing to the short duration and X-ray/ultraviolet (UV)-peaked spectra. After the first observation from the rising phase reported in 2008, its ob servability at high redshift is attracting enormous attention. We perform multigroup radiation hydrodynamics calculations of explosions for evolutionary presupernova models with various main-sequence masses $M_{rm MS}$, metallicities $Z$, and explosion energies $E$. We present multicolor light curves of shock breakout in Type II plateau SNe, being the most frequent core-collapse SNe, and predict apparent multicolor light curves of shock breakout at various redshifts $z$. We derive the observable SN rate and reachable redshift as functions of filter $x$ and limiting magnitude $m_{x,{rm lim}}$ by taking into account an initial mass function, cosmic star formation history, intergalactic absorption, and host galaxy extinction. We propose a realistic survey strategy optimized for shock breakout. For example, the $g$-band observable SN rate for $m_{g,{rm lim}}=27.5$ mag is 3.3 SNe degree$^{-2}$ day$^{-1}$ and a half of them locates at $zgeq1.2$. It is clear that the shock breakout is a beneficial clue to probe high-$z$ core-collapse SNe. We also establish ways to identify shock breakout and constrain SN properties from the observations of shock breakout, brightness, time scale, and color. We emphasize that the multicolor observations in blue optical bands with $sim$ hour intervals, preferably over $geq2$ continuous nights, are essential to efficiently detect, identify, and interpret shock breakout.
We present photometry and spectroscopy of SN2013fs and SN2013fr in the first 100 days post-explosion. Both objects showed transient, relatively narrow H$alpha$ emission lines characteristic of SNeIIn, but later resembled normal SNeII-P or SNeII-L, in dicative of fleeting interaction with circumstellar material (CSM). SN2013fs was discovered within 8hr of explosion. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SNIIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNeII-P and IIn. It requires dense CSM within 6.5$times$10$^{14}$~cm of the progenitor, from a phase of advanced pre-SN mass loss shortly before explosion. Spectropolarimetry of SN2013fs shows little continuum polarization, but noticeable line polarization during the plateau phase. SN2013fr morphed from a SNIIn at early times to a SNII-L. After the first epoch its narrow lines probably arose from host-galaxy emission, but the bright, narrow H$alpha$ emission at early times may be intrinsic. As for SN2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNeIIn and II-L. It is a low-velocity SNII-L, like SN2009kr but more luminous. SN2013fr also developed an IR excess at later times, due to warm CSM dust that require a more sustained phase of strong pre-SN mass loss.
We present 3D simulations of core-collapse supernovae from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, considering two 15 Msun red supergiants (RSG) and two blue supergiants (BSG) of 15 Msun and 20 Msun. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximal Ni and minimal H velocities do not only depend on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities) but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which lead to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a great global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km/s for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 Msun BSG shares these properties (maximum Ni speeds up to ~3500 km/s), the 20 Msun BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km/s) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He/H interface.
Type Ia supernovae are key tools for measuring distances on a cosmic scale. They are generally thought to be the thermonuclear explosion of an accreting white dwarf in a close binary system. The nature of the mass donor is still uncertain. In the sin gle-degenerate model it is a main-sequence star or an evolved star, whereas in the double-degenerate model it is another white dwarf. We show that the velocity structure of absorbing material along the line of sight to 35 type Ia supernovae tends to be blueshifted. These structures are likely signatures of gas outflows from the supernova progenitor systems. Thus many type Ia supernovae in nearby spiral galaxies may originate in single-degenerate systems.
146 - Anthony L. Piro 2009
The mode of explosive burning in Type Ia SNe remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the DDT). We argue that this transition leads to a breakou t shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (~20 keV) lasting ~0.01 s with a total radiated energy of ~10^{40} ergs, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M_V = -9 to -10 at approximately 1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m=24) will see it out to a distance of approximately 80 Mpc, giving a maximum rate of ~60/yr. Archival data sets can also be used to study the early rise dictated by the shock heating (at about 20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion induced collapse to a neutron star, but with a lower occurrence rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا