ﻻ يوجد ملخص باللغة العربية
By combining scanning tunneling microscopy/spectroscopy and first-principles calculations, we systematically study the local electronic states of magnetic dopants V and Cr in the topological insulator (TI) Sb2Te3. Spectroscopic imaging shows diverse local defect states between Cr and V, which agree with our first-principle calculations. The unique spectroscopic features of V and Cr dopants provide electronic fingerprints for the co-doped magnetic TI samples with the enhanced quantum anomalous Hall effect. Our results also facilitate the exploration of the underlying mechanism of the enhanced quantum anomalous Hall temperature in Cr/V co-doped TIs.
The magnetic and electronic properties of the magnetically doped topological insulator Bi$_{rm 2-x}$Mn$_{rm x}$Te$_3$ were studied using electron spin resonance (ESR) and measurements of static magnetization and electrical transport. The investigated
Experimental signatures of charge density waves (CDW) in high-temperature superconductors have evoked much recent interest, yet an alternative interpretation has been theoretically raised based on electronic standing waves resulting from quasiparticl
The tunneling junction between one-dimensional topological superconductor and integer (fractional) topological insulator (TI), realized via point contact, is investigated theoretically with bosonization technology and renormalization group methods. F
Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2
We report on transport properties of the topological insulator single crystal $Sb2Te3$ nanoflakes with thickness about from 7 to 50nm. A steep drop of resistance is appeared near $3K$ in the ultrathin $Sb2Te3$ nanoflakes, manifesting a superconductin