ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-shaped nanostructures for the study of spin to charge interconversions using spin-orbit coupling in non-magnetic materials

87   0   0.0 ( 0 )
 نشر من قبل Laurent Vila
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

Vanadium tetracyanoethylene (V[TCNE]$_text{x}$) is an organic-based ferrimagnet that exhibits robust magnetic ordering (T$_text{C}$ of over 600 K), high quality-factor (high-Q) microwave resonance (Q up to 3,500), and compatibility with a wide variet y of substrates and encapsulation technologies. Here, we substantially expand the potential scope and impact of this emerging material by demonstrating the ability to produce engineered nanostructures with tailored magnetic anisotropy that serve as a platform for the exploration of cavity magnonics, revealing strongly coupled quantum confined standing wave modes that can be tuned into and out of resonance with an applied magnetic field. Specifically, time-domain micromagnetic simulations of these nanostructures faithfully reproduce the experimentally measured spectra, including the quasi-uniform mode and higher-order spin-wave (magnon) modes. Finally, when the two dominant magnon modes present in the spectra are brought into resonance by varying the orientation of the in-plane magnetic field, we observe anti-crossing behavior indicating strong coherent coupling between these two magnon modes at room temperature. These results position V[TCNE]$_text{x}$ as a leading candidate for the development of coherent magnonics, with potential applications ranging from microwave electronics to quantum information.
Symmetry formulated by group theory plays an essential role with respect to the laws of nature, from fundamental particles to condensed matter systems. Here, by combining symmetry analysis and tight-binding model calculations, we elucidate that the c rystallographic symmetries of a vast number of magnetic materials with light elements, in which the neglect of relativistic spin-orbit coupling (SOC) is an appropriate approximation, are considerably larger than the conventional magnetic groups. Thus, a symmetry description that involves partially-decoupled spin and spatial rotations, dubbed as spin group, is required. Spin group permits more symmetry operations and thus more energy degeneracies that are disallowed by the magnetic groups. One consequence of the spin group is the new anti-unitary symmetries that protect SOC-free Z_2 topological phases with unprecedented surface node structures. Our work not only manifests the physical reality of materials with weak SOC, but also shed light on the understanding of all solids with and without SOC by a unified group theory.
372 - D. F. Liu , E. K. Liu , Q. N. Xu 2021
The spin-orbit coupling (SOC) lifts the band degeneracy that plays a vital role in the search for different topological states, such as topological insulators (TIs) and topological semimetals (TSMs). In TSMs, the SOC can partially gap a degenerate no dal line, leading to the formation of Dirac/Weyl semimetals (DSMs/WSMs). However, such SOC-induced gap structure along the nodal line in TSMs has not yet been systematically investigated experimentally. Here, we report a direct observation of such gap structure in a magnetic WSM Co3Sn2S2 using high resolution angle-resolved photoemission spectroscopy. Our results not only reveal the existence and importance of the strong SOC effect in the formation of the WSM phase in Co3Sn2S2, but also provide insights for the understanding of its exotic physical properties.
The discovery of an ever increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin-orbit coupling (SOC) and topological systems, calls for some guiding principles to tailor and optimiz e novel spin transport and optical properties at their interfaces. Here we focus on the latest developments in both fields that have brought them closer together and make them ripe for future fruitful synergy. After outlining fundamentals on van der Waals (vdW) magnetism and SOC effects, we discuss how their coexistence, manipulation and competition could ultimately establish new ways to engineer robust spin textures and drive the generation and dynamics of spin current and magnetization switching in 2D materials-based vdW heterostructures. Grounding our analysis on existing experimental results and theoretical considerations, we draw a prospective analysis about how intertwined magnetism and spin-orbit torque (SOT) phenomena combine at interfaces with well-defined symmetries, and how this dictates the nature and figures-of-merit of SOT and angular momentum transfer. This will serve as a guiding role in designing future non-volatile memory devices that utilize the unique properties of 2D materials with the spin degree of freedom.
Two-dimensional topological materials (TMs) have a variety of properties that make them attractive for applications including spintronics and quantum computation. However, there are only a few such experimentally known materials. To help discover new 2D TMs, we develop a unified and computationally inexpensive approach to identify magnetic and non-magnetic 2D TMs, including gapped and semi-metallic topological classifications, in a high-throughput way using density functional theory-based spin-orbit spillage, Wannier-interpolation, and related techniques. We first compute the spin-orbit spillage for the ~1000 2D materials in the JARVIS-DFT dataset (https://www.ctcms.nist.gov/~knc6/JVASP.html ), resulting in 122 materials with high-spillage values. Then, we use Wannier-interpolation to carry-out Z2, Chern-number, anomalous Hall conductivity, Curie temperature, and edge state calculations to further support the predictions. We identify various topologically non-trivial classes such as quantum spin-hall insulators (QSHI), quantum anomalous-hall insulators (QAHI), and semimetals. For a few predicted materials, we run G0W0+SOC and DFT+U calculations. We find that as we introduce many-body effects, only a few materials retain non-trivial band-topology, suggesting the importance of high-level DFT methods in predicting 2D topological materials. However, as an initial step, the automated spillage screening and Wannier-approach provide useful predictions for finding new topological materials and to narrow down candidates for experimental synthesis and characterization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا