ﻻ يوجد ملخص باللغة العربية
We present simulations for the steady-shear rheology of a model adhesive dispersion. We vary the range of the attractive forces $u$ as well as the strength of the dissipation $b$. For large dissipative forces, the rheology is governed by the Weisenberg number $ text{Wi}sim bdotgamma/u$ and displays Herschel-Bulkley form $sigma = sigma_y+ctext{Wi}^ u$ with exponent $ u=0.45$. Decreasing the strength of dissipation, the scaling with $text{Wi}$ breaks down and inertial effects show up. The stress decreases via the Johnson-Samwer law $Deltasigmasim T_s^{2/3}$, where temperature $T_s$ is exclusively due to shear-induced vibrations. During flow particles prefer to rotate around each other such that the dominant velocities are directed tangentially to the particle surfaces. This tangential channel of energy dissipation and its suppression leads to a discontinuity in the flow curve, and an associated discontinuous shear thinning transition. We set up an analogy with frictional systems, where the phenomenon of discontinuous shear thickening occurs. In both cases tangential forces, frictional or viscous, mediate a transition from one branch of the flowcurve with low tangential dissipation to one with large tangential dissipation.
In directionally-dried colloidal dispersions regular bands can appear behind the drying front, inclined at $pm45^circ$ to the drying line. Although these features have been noted to share visual similarities to shear bands in metal, no physical mecha
We report direct measurements of spatially resolved surface stresses over the entire surface of a dense suspension during discontinuous shear thickening (DST) using Boundary Stress Microscopy (BSM) in a parallel-plate rheometer. We find that large fl
Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non
Dynamic particle-scale numerical simulations are used to show that the shear thickening observed in dense colloidal, or Brownian, suspensions is of a similar nature to that observed in non-colloidal suspensions, i.e., a stress-induced transition from
We report rheological measurements of a noncolloidal particle suspension in a Newtonian solvent at 40% solid volume fraction. An anomalous, frequency-dependent complex viscosity is found under oscillatory shear (OS) flow, whereas a constant dynamic v