ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoparticle lattices with electric and magnetic resonances [Prospective]

56   0   0.0 ( 0 )
 نشر من قبل Viktoriia Babicheva
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lattice resonances in nanoparticle arrays recently have gained a lot of attention because of the possibility to produce spectrally narrow resonant features in transmission and reflection as well as significantly increase absorption in the structures. Most of the efforts so far have been put to study these lattice resonances in dipole approximation. However, the recent research shows that higher multipoles not only produce resonant feature but are also involved in cross-coupling, affect each other, and induce a magnetoelectric response. In this Prospective, we review the recent achievements in studying of interplay and coupling of different multipoles in periodic nanoparticle arrays and share our vision on further progress of the field.



قيم البحث

اقرأ أيضاً

Ultra-thin optical structures, known as metasurfaces, have shown promising light controlling capability at the nanoscale. In this paper, we study their particular case, a periodic array of high-refractive-index nanoparticles with electric and magneti c resonances. The main result of the work is a numerical demonstration that the lattice effect in the periodic arrangement of nanoparticles changes the resonance position even if the resonances are above the diffraction wavelength (Rayleigh anomaly). We show that the disk resonance changes can be achieved not only by varying periods of the array under normal light incidence but also by changing the incident angle.
We investigate the effect of parity-time (PT)-symmetric optical potentials on the radiation of achiral and chiral emitters. Mode coalescence and the appearance of exceptional points lead to orders-of-magnitude enhancements in the emitted dipole power . Further, the emitter can be tuned to behave as a strong optical source or absorber based on the non-Hermiticity parameter. Chiral enantiomers radiating near PT metamaterials exhibit a 4.5-fold difference in their decay rate. The results of this work could enable new atom-cavity interactions for quantum optics, as well as all- optical enantio-specific separation.
102 - G. De Conto , V. Pleitez 2017
We classify the meson and baryon long lived resonances considering quarks with electric charge 5/3 and $-4/3$ (in units of $vert evert$) predicted by some 3-3-1 models. Some of these exotic resonances have the usual electric charges $0,pm1$, others h ave $pm(3,4,5)$, and the lightest ones decaying only into leptons plus known resonances. We propose another heavy $SU(3)_H$ global symmetry under which hadrons involving only exotic quarks can be constructed.
136 - L. Deych , V. Shuvayev 2015
Nanoparticle-induced modifications of the spectrum of whispering-gallery-modes (WGM) of optical spheroidal resonators are studied theoretically. Combining an ab initio solution of a single resonator problem with a dipole approximation for the particl e, we derive simple analytical expressions for frequencies and widths of the particle-modified resonances, which are valid for resonators with moderate deviations from the spherical shape. The derived expressions are used to analyze spectral properties of the resonator-particle system as functions of the particles position, the size of the resonators and the characteristics of WGMs. The obtained results are shown to agree well with available experimental data. It is also demonstrated that the particle-induced spectral effects can be significantly enhanced by careful selection of resonators size, refractive index and other experimental parameters. The results presented in the paper can be useful for applications of WGM resonators in biosensing, cavity QED, optomechanics and others.
With the rise of artificial magnetism and metamaterials, the toroidal family recently attracts more attention for its unique properties. Here we propose an all-dielectric pentamer metamolecule consisting of nano-cylinders with two toroidal dipolar re sonances, whose frequencies, EM distributions and Q factor can be efficiently tuned due to the additional electric dipole mode offered by a central cylinder. To further reveal the underlying coupling effects and formation mechanism of toroidal responses, the multiple scattering theory is adopted. It is found that the first toroidal dipole mode, which can be tuned from 2.21 to 3.55 $mu$m, is mainly induced by a collective electric dipolar resonance, while the second one, which can be tuned from 1.53 to 1.84 $mu$m, relies on the cross coupling of both electric and magnetic dipolar responses. The proposed low-loss metamolecule and modes coupling analyses may pave the way for active design of toroidal responses in advanced optical devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا