ﻻ يوجد ملخص باللغة العربية
In this paper, we examine the superadditivity of convex roof coherence measures. We put forward a theorem on the superadditivity of convex roof coherence measures, which provides a sufficient condition to identify the convex roof coherence measures fulfilling the superadditivity. By applying the theorem to each of the known convex roof coherence measures, we prove that the coherence of formation and the coherence concurrence are superadditive, while the geometric measure of coherence, the convex roof coherence measure based on linear entropy, the convex roof coherence measure based on fidelity, and convex roof coherence measure based on $frac{1}{2}$-entropy are non-superadditive.
New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the
Quantum coherence, like entanglement, is a fundamental resource in quantum information. In recent years, remarkable progress has been made in formulating resource theory of coherence from a broader perspective. The notions of block-coherence and POVM
In this paper, we investigate the generalised monogamy inequalities of convex-roof extended negativity (CREN) in multi-level systems. The generalised monogamy inequalities provide the upper and lower bounds of bipartite entanglement, which are obtain
We propose replacing concurrence by convex-roof extended negativity (CREN) for studying monogamy of entanglement (MoE). We show that all proven MoE relations using concurrence can be rephrased in terms of CREN. Furthermore we show that higher-dimensi
Single-photon sources (SPSs) are mainly characterized by the minimum value of their second-order coherence function, viz. their $g^{(2)}$ function. A precise measurement of $g^{(2)}$ may, however, require high time-resolution devices, in whose absenc