ﻻ يوجد ملخص باللغة العربية
We study variable-speed random walks on $mathbb Z$ driven by a family of nearest-neighbor time-dependent random conductances ${a_t(x,x+1)colon xinmathbb Z, tge0}$ whose law is assumed invariant and ergodic under space-time shifts. We prove a quenched invariance principle for the random walk under the minimal moment conditions on the environment; namely, assuming only that the conductances possess the first positive and negative moments. A novel ingredient is the representation of the parabolic coordinates and the corrector via a dual random walk which is considerably easier to analyze.
Consider a system of particles performing nearest neighbor random walks on the lattice $ZZ$ under hard--core interaction. The rate for a jump over a given bond is direction--independent and the inverse of the jump rates are i.i.d. random variables be
We study models of continuous time, symmetric, $Z^d$-valued random walks in random environments. One of our aims is to derive estimates on the decay of transition probabilities in a case where a uniform ellipticity assumption is absent. We consider t
We consider transient one-dimensional random walks in random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of valleys of height $log t$. In t
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro
We consider a one dimensional random walk in random environment that is uniformly biased to one direction. In addition to the transition probability, the jump rate of the random walk is assumed to be spatially inhomogeneous and random. We study the p