ﻻ يوجد ملخص باللغة العربية
The two-stage process of propensity score analysis (PSA) includes a design stage where propensity scores are estimated and implemented to approximate a randomized experiment and an analysis stage where treatment effects are estimated conditional upon the design. This paper considers how uncertainty associated with the design stage impacts estimation of causal effects in the analysis stage. Such design uncertainty can derive from the fact that the propensity score itself is an estimated quantity, but also from other features of the design stage tied to choice of propensity score implementation. This paper offers a procedure for obtaining the posterior distribution of causal effects after marginalizing over a distribution of design-stage outputs, lending a degree of formality to Bayesian methods for PSA (BPSA) that have gained attention in recent literature. Formulation of a probability distribution for the design-stage output depends on how the propensity score is implemented in the design stage, and propagation of uncertainty into causal estimates depends on how the treatment effect is estimated in the analysis stage. We explore these differences within a sample of commonly-used propensity score implementations (quantile stratification, nearest-neighbor matching, caliper matching, inverse probability of treatment weighting, and doubly robust estimation) and investigate in a simulation study the impact of statistician choice in PS model and implementation on the degree of between- and within-design variability in the estimated treatment effect. The methods are then deployed in an investigation of the association between levels of fine particulate air pollution and elevated exposure to emissions from coal-fired power plants.
Selective inference (post-selection inference) is a methodology that has attracted much attention in recent years in the fields of statistics and machine learning. Naive inference based on data that are also used for model selection tends to show an
Occupancy models are used in statistical ecology to estimate species dispersion. The two components of an occupancy model are the detection and occupancy probabilities, with the main interest being in the occupancy probabilities. We show that for t
Inverse probability of treatment weighting (IPTW) is a popular method for estimating the average treatment effect (ATE). However, empirical studies show that the IPTW estimators can be sensitive to the misspecification of the propensity score model.
This paper discusses the challenges presented by tall data problems associated with Bayesian classification (specifically binary classification) and the existing methods to handle them. Current methods include parallelizing the likelihood, subsamplin
Inverse probability of treatment weighting (IPTW) is a popular propensity score (PS)-based approach to estimate causal effects in observational studies at risk of confounding bias. A major issue when estimating the PS is the presence of partially obs