ﻻ يوجد ملخص باللغة العربية
As the discoveries of more minor bodies in retrograde resonances with giant planets, such as 2015 BZ509 and 2006 RJ2, our curiosity about the Kozai-Lidov dynamics inside the retrograde resonance has been sparked. In this study, we focus on the 3D retrograde resonance problem and investigate how the resonant dynamics of a minor body impacts on its own Kozai-Lidov cycle. Firstly we deduce the action-angle variables and canonical transformations that deal with the retrograde orbit specifically. After obtaining the dominant Hamiltonian of this problem, we then carry out the numerical averaging process in closed form to generate phase-space portraits on a $e-omega$ space. The retrograde 1:1 resonance is particularly scrutinized in detail, and numerical results from a CRTBP model shows a great agreement with the our semi-analytical portraits. On this basis, we inspect two real minor bodies currently trapped in retrograde 1:1 mean motion resonance. It is shown that they have different Kozai-Lidov states, which can be used to analyze the stability of their unique resonances. In the end, we further inspect the Kozai-Lidov dynamics inside the 2:1 and 2:5 retrograde resonance, and find distinct dynamical bifurcations of equilibrium points on phase-space portraits.
We use three dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged per
The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets, stars to black holes. In such a system two objects are on a tight orbit, and the tertiary is on
Kepler-78b is one of a growing sample of planets similar, in composition and size, to the Earth. It was first detected with NASAs emph{Kepler} spacecraft and then characterised in more detail using radial velocity follow-up observations. Not only is
The so-called Lidov-Kozai oscillation is very well known and applied to various problems in solar system dynamics. This mechanism makes the orbital inclination and eccentricity of the perturbed body in the circular restricted three-body system oscill
The stability of planets in the alpha-Centauri AB stellar system has been studied extensively. However, most studies either focus on the orbital plane of the binary or consider inclined circular orbits. Here, we numerically investigate the stabilit