ﻻ يوجد ملخص باللغة العربية
Quantum key distribution (QKD), a technology that enables perfectly secure communication, has evolved to the stage where many different protocols are being used in real-world implementations. Each protocol has its own advantages, meaning that users can choose the one best-suited to their application, however each often requires different hardware. This complicates multi-user networks, in which users may need multiple transmitters to communicate with one another. Here, we demonstrate a direct-modulation based transmitter that can be used to implement most weak coherent pulse based QKD protocols with simple changes to the driving signals. This also has the potential to extend to classical communications, providing a low chirp transmitter with simple driving requirements that combines phase shift keying with amplitude shift keying. We perform QKD with concurrent time-bin and phase modulation, alongside phase randomisation. The acquired data is used to evaluate secure key rates for time-bin encoded BB84 with decoy states and a finite key-size analysis, giving megabit per second secure key rates, 1.60 times higher than if purely phase-encoded BB84 was used.
Signal state preparation in quantum key distribution schemes can be realized using either an active or a passive source. Passive sources might be valuable in some scenarios; for instance, in those experimental setups operating at high transmission ra
We present a silicon optical transmitter for polarization-encoded quantum key distribution (QKD). The chip was fabricated in a standard silicon photonic foundry process and integrated a pulse generator, intensity modulator, variable optical attenuato
We describe the realization of a quantum key distribution (QKD) system clocked at 100 MHz. The system includes classical postprocessing implemented via software, and is operated over a 12 km standard telecommunication dark fiber in a real-world envir
We present a 2.5 GHz quantum key distribution setup with the emphasis on a simple experimental realization. It features a three-state time-bin protocol based on a pulsed diode laser and a single intensity modulator. Implementing an efficient one-deco
Measurement-device-independent quantum key distribution (MDI-QKD) is a technique for quantum-secured communication that eliminates all detector side-channels, although is currently limited by implementation complexity and low secure key rates. Here,