ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadening of Ly alpha by neutral helium in DBA white dwarfs

169   0   0.0 ( 0 )
 نشر من قبل Boris Gaensicke
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Traces of photospheric hydrogen are detected in at least half of all white dwarfs with helium-dominated atmospheres through the presence of H alpha in high-quality optical spectroscopy. Previous studies have noted significant discrepancies between the hydrogen abundances derived from H alpha and Ly alpha for a number of stars where ultraviolet spectroscopy is also available. We demonstrate that this discrepancy is caused by inadequate treatment of the broadening of Ly alpha by neutral helium. When fitting Hubble Space Telescope COS spectroscopy of 17 DB white dwarfs using our new line profile calculations, we find good agreement between log(H/He) measured from Ly alpha and H alpha. Larger values of log(H/He) based on Ly alpha are still found for three stars, which are among the most distant in our sample, and we show that a small amount of interstellar absorption from neutral hydrogen can account for this discrepancy.

قيم البحث

اقرأ أيضاً

The hydrogen abundances in DBA white dwarfs determined from optical or UV spectra have been reported to differ significantly in some studies. We revisit this problem using our own model atmospheres and synthetic spectra, and present a theoretical inv estigation of the Lyman-$alpha$ line profile as a function of effective temperature and hydrogen abundance. We identify one possible solution to this discrepancy and show considerable improvement from a detailed analysis of optical and UV spectra of DBA stars.
96 - B. Rolland , P. Bergeron , 2020
We revisit the problem of the formation of DB white dwarfs, as well as the origin of hydrogen in DBA stars, using a new set of envelope model calculations with stratified and mixed hydrogen/helium compositions. We first describe an approximate model to simulate the so-called convective dilution process, where a thin, superficial hydrogen radiative layer is gradually eroded by the underlying and more massive convective helium envelope, thus transforming a DA white dwarf into a DB star. We show that this convective dilution process is able to account for the large increase in the number of DB white dwarfs below Teff ~ 20,000 K, but that the residual hydrogen abundances expected from this process are still orders of magnitude lower than those observed in DBA white dwarfs. Scenarios involving the accretion of hydrogen from the interstellar medium or other external bodies have often been invoked to explain these overabundances of hydrogen. In this paper, we describe a new paradigm where hydrogen, initially diluted within the thick stellar envelope, is still present and slowly diffusing upward in the deeper layers of a Teff ~ 20,000 K white dwarf. When the convective dilution process occurs, the bottom of the mixed H/He convection zone sinks deep into the star, resulting in large amounts of hydrogen being dredged-up to the stellar surface, a phenomenon similar to that invoked in the context of DQ white dwarfs.
In this paper, we present corrections to the spectroscopic parameters of DB and DBA white dwarfs with -10.0 < log(H/He) < -2.0, 7.5 < log(g) < 9.0 and 12000 K < T_eff < 34000 K, based on 282 3D atmospheric models calculated with the CO5BOLD radiation -hydrodynamics code. These corrections arise due to a better physical treatment of convective energy transport in 3D models when compared to the previously available 1D model atmospheres. By applying the corrections to an existing SDSS sample of DB and DBA white dwarfs, we find significant corrections both for the effective temperature and surface gravity. The 3D log(g) corrections are most significant for T_eff < 18000 K, reaching up to -0.20 dex at log(g) = 8.0. However, in this low effective temperature range, the surface gravity determined from the spectroscopic technique can also be significantly affected by the treatment of the neutral van der Waals line broadening of helium and by non-ideal effects due to the perturbation of helium by neutral atoms. Thus, by removing uncertainties due to 1D convection, our work showcases the need for improved description of microphysics for DB and DBA model atmospheres. Overall, we find that our 3D spectroscopic parameters for the SDSS sample are generally in agreement with Gaia DR2 absolute fluxes within 1-3{sigma} for individual white dwarfs. By comparing our results to DA white dwarfs, we have determined that the precision and accuracy of DB/DBA atmospheric models are similar. For ease of user application of the correction functions, we provide an example Python code.
We present a homogeneous analysis of 1023 DBZ/DZ(A) and 319 DQ white dwarf stars taken from the Montreal White Dwarf Database. This represents a significant increase over the previous comprehensive studies on these types of objects. We use new trigon ometric parallax measurements from the Gaia second data release, together with photometry from the Sloan Digital Sky Survey, Pan-STARRS, Gaia, or BVRI from the literature, which allow the determination of the mass for the majority of the objects in our sample. We use the photometric and spectroscopic techniques with the most recent model atmospheres available, which include high-density effects, to accurately determine the effective temperature, surface gravity, and heavy element abundances for each object. We study the abundance of hydrogen in DBZ/DZ white dwarfs and the properties of the accreted planetesimals. We explore the nature of the second sequence of DQ stars using proper motions from Gaia, and highlight evidence of crystallization in massive DQ stars. We also present mass distributions for both spectral types. Finally, we discuss the implications of our findings in the context of the spectral evolution of white dwarfs, and provide the atmospheric parameters for each star.
The HI Ly$alpha$ (1215.67 $unicode{xC5}$) emission line dominates the far-UV spectra of M dwarf stars, but strong absorption from neutral hydrogen in the interstellar medium makes observing Ly$alpha$ challenging even for the closest stars. As part of the Far-Ultraviolet M-dwarf Evolution Survey (FUMES), the Hubble Space Telescope has observed 10 early-to-mid M dwarfs with ages ranging from $sim$24 Myr to several Gyrs to evaluate how the incident UV radiation evolves through the lifetime of exoplanetary systems. We reconstruct the intrinsic Ly$alpha$ profiles from STIS G140L and E140M spectra and achieve reconstructed fluxes with 1-$sigma$ uncertainties ranging from 5% to a factor of two for the low resolution spectra (G140L) and 3-20% for the high resolution spectra (E140M). We observe broad, 500-1000 km s$^{-1}$ wings of the Ly$alpha$ line profile, and analyze how the line width depends on stellar properties. We find that stellar effective temperature and surface gravity are the dominant factors influencing the line width with little impact from the stars magnetic activity level, and that the surface flux density of the Ly$alpha$ wings may be used to estimate the chromospheric electron density. The Ly$alpha$ reconstructions on the G140L spectra are the first attempted on $lambda/Deltalambdasim$1000 data. We find that the reconstruction precision is not correlated with SNR of the observation, rather, it depends on the intrinsic broadness of the stellar Ly$alpha$ line. Young, low-gravity stars have the broadest lines and therefore provide more information at low spectral resolution to the fit to break degeneracies among model parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا