ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional collective Hamiltonian for chiral and wobbling modes II: Electromagnetic transitions

64   0   0.0 ( 0 )
 نشر من قبل Xinhui Wu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The intraband electromagnetic transitions in the framework of collective Hamiltonian for chiral and wobbling modes are calculated. By going beyond the mean field approximation on the orientations of rotational axis, the collective Hamiltonian provides the descriptions on both yrast band and collective excitation bands. For a system with one $h_{11/2}$ proton particle and one $h_{11/2}$ neutron hole coupled to a triaxial rotor ($gamma=-30^circ$), the intraband electromagnetic transitions given by the one-dimensional and two-dimensional collective Hamiltonian are compared to the results by the tilted axis cranking approach and particle rotor model. Compared with the tilted axis cranking approach, the electromagnetic transitions given by the collective Hamiltonian have a better agreement with those by the particle rotor model, due to the consideration of the quantum fluctuations.



قيم البحث

اقرأ أيضاً

A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $gamma$-bands , chiral doublet bands and the wobbling mode. In the TPSM approach, $gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd-odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in $^{135}$Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties.
The nuclear Chirality-Parity (ChP) violation, a simultaneous breaking of chiral and reflection symmetries in the intrinsic frame, is investigated with a reflection-asymmetric triaxial particle rotor model. A new symmetry for an ideal ChP violation sy stem is found and the corresponding selection rules of the electromagnetic transitions are derived. The fingerprints for the ChP violation including the nearly degenerate quartet bands and the selection rules of the electromagnetic transitions are provided. These fingerprints are examined for ChP quartet bands by taking a two-$j$ shell $h_{11/2}$ and $d_{5/2}$ with typical energy spacing for $A=$ 130 nuclei.
82 - J. Xiang , Z. P. Li , T. Niksic 2020
The quadrupole collective Hamiltonian, based on relativistic energy density functionals, is extended to include a pairing collective coordinate. In addition to quadrupole shape vibrations and rotations, the model describes pairing vibrations and the coupling between shape and pairing degrees of freedom. The parameters of the collective Hamiltonian are determined by constrained self-consistent relativistic mean-field plus Bardeen-Cooper-Schrieffer (RMF+BCS) calculations in the space of intrinsic shape and pairing deformations. The effect of coupling between shape and pairing degrees of freedom is analyzed in a study of low-energy spectra and transition rates of four axially symmetric $N=92$ rare-earth isotones. When compared to results obtained with the standard quadrupole collective Hamiltonian, the inclusion of dynamical pairing increases the moment of inertia, lowers the energies of excited $0^+$ states and reduces the E0-transition strengths, in better agreement with data.
The $g$-factor and static quadrupole moment for the wobbling mode in the nuclide $^{133}$La are investigated as functions of the spin $I$by employing the particle rotor model. The model can reproduce the available experimental data of $g$-factor and static quadrupole moment. The properties of the $g$-factor and static quadrupole moment as functions of $I$ are interpreted by analyzing the angular momentum geometry of the collective rotor, proton-particle, and total nuclear system. It is demonstrated that the experimental value of the $g$-factor at the bandhead of the yrast band leads to the conclusion that the rotor angular momentum is $Rsimeq 2$. Furthermore, the variation of the $g$-factor with the spin $I$ yields the information that the angular momenta of the proton-particle and total nuclear system are oriented parallel to each other. The negative values of the static quadrupole moment over the entire spin region are caused by an alignment of the total angular momentum mainly along the short axis. Static quadrupole moment differences between the wobbling and yrast band originate from a wobbling excitation with respect to the short axis.
We present an extension of the random--phase approximation (RPA) where the RPA phonons are used as building blocks to construct the excited states. In our model, that we call double RPA (DRPA), we include up to two RPA phonons. This is an approximate and simplified way, with respect to the full second random--phase approximation (SRPA), to extend the RPA by including two particle--two hole configurations. Some limitations of the standard SRPA model, related to the violation of the stability condition, are not encountered in the DRPA. We also verify in this work that the energy--weighted sum rules are satisfied. The DRPA is applied to low--energy modes and giant resonances in the nucleus $^{16}$O. We show that the model (i) produces a global downwards shift of the energies with respect to the RPA spectra; (ii) provides a shift that is however strongly reduced compared to that generated by the standard SRPA. This model represents an alternative way of correcting for the SRPA anomalous energy shift, compared to a recently developed extension of the SRPA, where a subtraction procedure is applied. The DRPA provides results in good agreeement with the experimental energies, with the exception of those low--lying states that have a dominant two particle--two hole nature. For describing such states, higher--order calculations are needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا