ﻻ يوجد ملخص باللغة العربية
The apparent thermalization of the particles produced in hadronic collisions can be obtained by quantum entanglement of the partons of the initial state once a fast hard collision is produced. The scale of the hard collision is related to the thermal temperature. As the probability distribution of these events is of the form $np(n)$, as a consequence, the von Neumann entropy is larger than in the minimum bias case. The leading contribution to this entropy comes from the logarithm of the number of partons $n$, all with equal probability, making maximal the entropy. In addition there is another contribution related to the width of the parton multiplicity. Asymptotically, the entanglement entropy becomes the logarithm of $sqrt{n}$, indicating that the number of microstates changes with energy from $n$ to $sqrt{n}$.
We derive one-loop matching relations for the Ioffe-time distributions related to the pion distribution amplitude (DA) and generalized parton distributions (GPDs). They are obtained from a universal expression for the one-loop correction in an operat
We provide an assessment of the state of the art in various issues related to experimental measurements, phenomenological methods and theoretical results relevant for the determination of parton distribution functions (PDFs) and their uncertainties,
Through explicit examples we show that twist-4 parton distributions have no parton interpretation in the sense that parton or partons inside a hadron can carry the momentum fraction $x$ of the hadron with $x >1$ or $x<-1$. The studied twist-4 parton
We investigate the relations between transverse momentum dependent parton distributions (TMDs) and generalized parton distributions (GPDs) in a light-front quark-diquark model motivated by soft wall AdS/QCD. Many relations are found to have similar s
Utilizing the holographic technique, we investigate how the entanglement entropy evolves along the RG flow. After introducing a new generalized temperature which satisfies the thermodynamics-like law even in the IR regime, we find that the renormaliz