ترغب بنشر مسار تعليمي؟ اضغط هنا

GW170817: implications for the local kilonova rate and for surveys from ground-based facilities

66   0   0.0 ( 0 )
 نشر من قبل Luca Izzo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the local rate of events similar to GRB 170817A, which has been recently found to be associated with a kilonova (KN) outburst. Our analysis finds an observed rate of such events of R$_{KN}sim 352^{+810}_{-281}$ Gpc$^{-3}$yr$^{-1}$. After comparing at their face values this density of sGRB outbursts with the much higher density of Binary Neutron Star (BNS) mergers of 1540$^{+3200}_{-1220}$ Gpc$^{-3}$yr$^{-1}$, estimated by LIGO-Virgo collaboration, one can conclude, admittedly with large uncertainty that either only a minor fraction of BNS mergers produces sGRB/KN events or the sGRBs associated with BNS mergers are beamed and observable under viewing angles as large as $theta$ $leq$ $40^{circ}$. Finally we provide preliminary estimates of the number of sGRB/KN events detected by future surveys carried out with present/future ground-based/space facilities, such as LSST, VST, ZTF, SKA and THESEUS.


قيم البحث

اقرأ أيضاً

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation o f the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.
The neutron star (NS) merger GW170817 was followed over several days by optical-wavelength (blue) kilonova (KN) emission likely powered by the radioactive decay of light r-process nuclei synthesized by ejecta with a low neutron abundance (electron fr action Ye ~ 0.25-0.35). While the composition and high velocities of the blue KN ejecta are consistent with shock-heated dynamical material, the large quantity is in tension with the results of numerical simulations. We propose an alternative ejecta source: the neutrino-heated, magnetically-accelerated wind from the strongly-magnetized hypermassive NS (HMNS) remnant. A rapidly-spinning HMNS with an ordered surface magnetic field of strength B ~ 1-3e14 G and lifetime t_rem ~ 0.1-1 s can simultaneously explain the velocity, total mass, and electron fraction of the blue KN ejecta. The inferred HMNS lifetime is close to its Alfven crossing time, suggesting global magnetic torques could be responsible for bringing the HMNS into solid body rotation and instigating its gravitational collapse. Different origins for the KN ejecta may be distinguished by their predictions for the emission in the first hours after the merger, when the luminosity is enhanced by heating from internal shocks; the latter are likely generic to any temporally-extended ejecta source (e.g. magnetar or accretion disk wind) and are not unique to the emergence of a relativistic jet. The same shocks could mix and homogenizes the composition to a low but non-zero lanthanide mass fraction, X_La ~ 1e-3, as advocated by some authors, but only if the mixing occurs after neutrons are consumed in the r-process on a timescale >~ 1 s.
Gravitational wave observations of GW170817 placed bounds on the tidal deformabilities of compact stars allowing one to probe equations of state for matter at supranuclear densities. Here we design new parametrizations for hybrid hadron-quark equatio ns of state, that give rise to low-mass twin stars, and test them against GW170817. We find that GW170817 is consistent with the coalescence of a binary hybrid star--neutron star. We also test and find that the I-Love-Q relations for hybrid stars in the third family agree with those for purely hadronic and quark stars within $sim 3%$ for both slowly and rapidly rotating configurations, implying that these relations can be used to perform equation-of-state independent tests of general relativity and to break degeneracies in gravitational waveforms for hybrid stars in the third family as well.
Recent detection of gravitational waves from a neutron star (NS) merger event GW170817 and identification of an electromagnetic counterpart provide a unique opportunity to study the physical processes in NS mergers. To derive properties of ejected ma terial from the NS merger, we perform radiative transfer simulations of kilonova, optical and near-infrared emissions powered by radioactive decays of r-process nuclei synthesized in the merger. We find that the observed near-infrared emission lasting for > 10 days is explained by 0.03 Msun of ejecta containing lanthanide elements. However, the blue optical component observed at the initial phases requires an ejecta component with a relatively high electron fraction (Ye). We show that both optical and near-infrared emissions are simultaneously reproduced by the ejecta with a medium Ye of ~ 0.25. We suggest that a dominant component powering the emission is post-merger ejecta, which exhibits that mass ejection after the first dynamical ejection is quite efficient. Our results indicate that NS mergers synthesize a wide range of r-process elements and strengthen the hypothesis that NS mergers are the origin of r-process elements in the Universe.
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ult raviolet (UV) and X-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading ultraviolet emission indicates a high mass ($approx0.03$ solar masses) wind-driven outflow with moderate electron fraction ($Y_{e}approx0.27$). Combined with the X-ray limits, we favor an observer viewing angle of $approx 30^{circ}$ away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a gamma-ray burst afterglow).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا