ترغب بنشر مسار تعليمي؟ اضغط هنا

A splitting of the virtual class for genus one stable maps

125   0   0.0 ( 0 )
 نشر من قبل Cristina Manolache
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Moduli spaces of stable maps to a smooth projective variety typically have several components. We express the virtual class of the moduli space of genus one stable maps to a smooth projective variety as a sum of virtual classes of the components. The key ingredient is a generalised functoriality result for virtual classes. We show that the natural maps from ghost components of the genus one moduli space to moduli spaces of genus zero stable maps satisfy the strong push forward property. As a consequence, we give a cycle-level formula which relates standard and reduced genus one Gromov--Witten invariants of a smooth projective Calabi--Yau theefold.


قيم البحث

اقرأ أيضاً

465 - Carel Faber , Nicola Pagani 2012
Let the bielliptic locus be the closure in the moduli space of stable curves of the locus of smooth curves that are double covers of genus 1 curves. In this paper we compute the class of the bielliptic locus in bar{M}_3 in terms of a standard basis o f the rational Chow group of codimension-2 classes in the moduli space. Our method is to test the class on the hyperelliptic locus: this gives the desired result up to two free parameters, which are then determined by intersecting the locus with two surfaces in bar{M}_3.
60 - E. Gonzalez , P. Solis , 2016
We give an introduction to moduli stacks of gauged maps satisfying a stability conditition introduced by Mundet and Schmitt, and the associated integrals giving rise to gauged Gromov-Witten invariants. We survey various applications to cohomological and K-theoretic Gromov-Witten invariants.
94 - Eduardo Esteves 2013
We compute the class of the closure of the locus of hyperelliptic curves in the moduli space of stable genus-3 curves in terms of the tautological class $lambda$ and the boundary classes $delta_0$ and $delta_1$. The expression of this class is known, but here we compute it directly, by means of Porteous Formula, without resorting to blowups or test curves.
Let $M_{g, n}$ (respectively, $overline{M_{g, n}}$) be the moduli space of smooth (respectively stable) curves of genus $g$ with $n$ marked points. Over the field of complex numbers, it is a classical problem in algebraic geometry to determine whethe r or not $M_{g, n}$ (or equivalently, $overline{M_{g, n}}$) is a rational variety. Theorems of J. Harris, D. Mumford, D. Eisenbud and G. Farkas assert that $M_{g, n}$ is not unirational for any $n geqslant 0$ if $g geqslant 22$. Moreover, P. Belorousski and A. Logan showed that $M_{g, n}$ is unirational for only finitely many pairs $(g, n)$ with $g geqslant 1$. Finding the precise range of pairs $(g, n)$, where $M_{g, n}$ is rational, stably rational or unirational, is a problem of ongoing interest. In this paper we address the rationality problem for twisted forms of $overline{M_{g, n}}$ defined over an arbitrary field $F$ of characteristic $ eq 2$. We show that all $F$-forms of $overline{M_{g, n}}$ are stably rational for $g = 1$ and $3 leqslant n leqslant 4$, $g = 2$ and $2 leqslant n leqslant 3$, $g = 3$ and $1 leqslant n leqslant 14$, $g = 4$ and $1 leqslant n leqslant 9$, $g = 5$ and $1 leqslant n leqslant 12$.
We investigate torus actions on logarithmic expansions in the context of enumerative geometry. Our main result is an intrinsic and coordinate-free description of the higher-rank rubber torus appearing in the boundary of the space of expanded stable m aps. The rubber torus is constructed canonically from the tropical moduli space, and its action on each stratum of the expanded target is encoded in a linear tropical position map. The presence of 2-morphisms in the universal target forces expanded stable maps differing by the rubber action to be identified. This provides the first step towards a recursive description of the boundary of the expanded moduli space, with future applications including localisation and rubber calculus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا