ﻻ يوجد ملخص باللغة العربية
We report simulation results on melts of entangled linear polymers confined in a free-standing thin film. We study how the geometric constraints imposed by the confinement alter the entanglement state of the system compared to the equivalent bulk system using various observables. We find that the confinement compresses the chain conformation uniaxially, decreasing the volume pervaded by the chain, which in turn reduces the number of the accessible inter-chain contact that could lead to entanglements. This local and non-uniform effect depends on the position of the chain within the film. We also test a recently presented theory that predicts how the number of entanglements decreases with geometrical confinement.
Structure of polymer electrolytes membranes, e.g., Nafion, inside fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ul
In both research and industrial settings spin coating is extensively used to prepare highly uniform thin polymer films. However, under certain conditions, spin coating results in films with non-uniform surface morphologies. Although the spin coating
We employ 3D Langevin Dynamics simulations to study the dynamics of polymer chains translocating through a nanopore in presence of asymmetric solvent conditions. Initially a large fraction ($>$ 50%) of the chain is placed at the textit{cis} side in a
In this study, thin elastic films supported on a rigid substrate are brought into contact with a spherical glass indenter. Upon contact, adhesive fingers emerge at the periphery of the contact patch with a characteristic wavelength. Elastic films are
A series of electron-doped cuprate La(2-x)CexCuO4 thin films with different thicknesses have been fabricated and their annealing time are adjusted carefully to ensure the highest superconducting transition temperature. The transport measurements indi