ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomically thin p-n junctions based on two-dimensional materials

85   0   0.0 ( 0 )
 نشر من قبل Riccardo Frisenda Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent research in two-dimensional (2D) materials has boosted a renovated interest in the p-n junction, one of the oldest electrical components which can be used in electronics and optoelectronics. 2D materials offer remarkable flexibility to design novel p-n junction device architectures, not possible with conventional bulk semiconductors. In this Review we thoroughly describe the different 2D p-n junction geometries studied so far, focusing on vertical (out-of-plane) and lateral (in-plane) 2D junctions and on mixed-dimensional junctions. We discuss the assembly methods developed to fabricate 2D p-n junctions making a distinction between top-down and bottom-up approaches. We also revise the literature studying the different applications of these atomically thin p-n junctions in electronic and optoelectronic devices. We discuss experiments on 2D p-n junctions used as current rectifiers, photodetectors, solar cells and light emitting devices. The important electronics and optoelectronics parameters of the discussed devices are listed in a table to facilitate their comparison. We conclude the Review with a critical discussion about the future outlook and challenges of this incipient research field.

قيم البحث

اقرأ أيضاً

Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have significant ramifications. Monolayer transition metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties. Electroluminescence has already been observed from monolayer MoS2 devices. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p-n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and combined with the high optical quality of WSe2 it yields bright electroluminescence with 1000 times smaller injection current and 10 times smaller linewidth than in MoS2. Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged, and neutral excitons. This system has the required ingredients for new kinds of optoelectronic devices such as spin- and valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional electro-optic modulators.
Creation of high quality p-n junctions in graphene monolayer is vital in studying many exotic phenomena of massless Dirac fermions. However, even with the fast progress of graphene technology for more than ten years, it remains conspicuously difficul t to generate nanoscale and atomically-sharp p-n junctions in graphene. Here, we employ monolayer-vacancy-island engineering of Cu surface to realize nanoscale p-n junctions with atomically-sharp boundaries in graphene monolayer. The variation of graphene-Cu separations around the edges of the Cu monolayer-vacancy-island affects the positions of the Dirac point in graphene, which consequently lead to atomically-sharp p-n junctions with the height as high as 660 meV in graphene. The generated sharp p-n junctions isolate the graphene above the Cu monolayer-vacancy-island as nanoscale graphene quantum dots (GQDs) in a continuous graphene sheet. Massless Dirac fermions are confined by the p-n junctions for a finite time to form quasi-bound states in the GQDs. By using scanning tunneling microscopy, we observe resonances of quasi-bound states in the GQDs with various sizes and directly visualize effects of geometries of the GQDs on the quantum interference patterns of the quasi-bound states, which allow us to test the quantum electron optics based on graphene in atomic scale.
We study the thermal effects on the frictional properties of atomically thin sheets. We simulate a simple model based on the Prandtl-Tomlinson model that reproduces the layer dependence of friction and strengthening effects seen in AFM experiments. W e investigate sliding at constant speed as well as reversing direction. We also investigate contact aging: the changes that occur to the contact when the sliding stops completely. We compare the numerical results to analytical calculations based on Kramers rates. We find that there is a slower than exponential contact aging that weakens the contact and that we expect will be observable in experiments. We discuss the implications for sliding as well as aging experiments.
The observation and electrical manipulation of infrared surface plasmons in graphene have triggered a search for similar photonic capabilities in other atomically thin materials that enable electrical modulation of light at visible and near-infrared frequencies, as well as strong interaction with optical quantum emitters. Here, we present a simple analytical description of the optical response of such kinds of structures, which we exploit to investigate their application to light modulation and quantum optics. Specifically, we show that plasmons in one-atom-thick noble-metal layers can be used both to produce complete tunable optical absorption and to reach the strong-coupling regime in the interaction with neighboring quantum emitters. Our methods are applicable to any plasmon-supporting thin materials, and in particular, we provide parameters that allow us to readily calculate the response of silver, gold, and graphene islands. Besides their interest for nanoscale electro-optics, the present study emphasizes the great potential of these structures for the design of quantum nanophotonics devices.
We introduce the Computational 2D Materials Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 two-dimensional materials distributed over more than 30 differen t crystal structures. Material properties are systematically calculated by state-of-the art density functional theory and many-body perturbation theory (G$_0!$W$!_0$ and the Bethe-Salpeter Equation for $sim$200 materials) following a semi-automated workflow for maximal consistency and transparency. The C2DB is fully open and can be browsed online or downloaded in its entirety. In this paper, we describe the workflow behind the database, present an overview of the properties and materials currently available, and explore trends and correlations in the data. Moreover, we identify a large number of new potentially synthesisable 2D materials with interesting properties targeting applications within spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for computational modeling and design of new 2D materials and van der Waals heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا