ترغب بنشر مسار تعليمي؟ اضغط هنا

A mid-infrared biaxial hyperbolic van der Waals crystal

387   0   0.0 ( 0 )
 نشر من قبل Zebo Zheng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hyperbolic media have attracted much attention in the photonics community, thanks to their ability to confine light to arbitrarily small volumes and to their use for super-resolution applications. The 2D counterpart of these media can be achieved with hyperbolic metasurfaces, which support in-plane hyperbolic guided modes thanks to nanopatterns which, however, pose significant fabrication challenges and limit the achievable confinement. We show that thin flakes of the van der Waals material {alpha}-MoO3 can support naturally in-plane hyperbolic polariton guided modes at mid-infrared frequencies without any patterning. This is possible because {alpha}-MoO3 is a biaxial hyperbolic crystal, with three different Restrahlen bands, each for a different crystal axis. Our findings can pave the way towards new paradigm to manipulate and confine light in planar photonic devices.

قيم البحث

اقرأ أيضاً

Recently, in-plane biaxial hyperbolicity has been observed in $alpha$-MoO${_3}$ --a van der Waal crystal-- in the mid-infrared frequency regime. Here, we present a comprehensive theoretical analysis of thin film $alpha$-MoO${_3}$ for application to t wo mid-IR photonic devices -- a polarizer and a waveplate. We show the possibility of a significant reduction in the device footprint while maintaining an enormous extinction ratio from $alpha$-MoO${_3}$ based polarizers in comparison with that of conventional polarizers. Secondly, we carry out device optimization of $alpha$-MoO${_3}$ based waveplates with subwavelength thickness. We explain our results using natural in-plane hyperbolicity of $alpha$-MoO${_3}$ via analytical and full wave simulations. This work will build a foundation for miniaturization of mid-infrared photonic devices by exploiting the optical anisotropy of $alpha$-MoO${_3}$.
Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons) that promise opportunities for controlling light in photonic and optoelectronic applications. We develop a mid- infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride supporting deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials, and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.
Traditionally, efforts to achieve perfect absorption have required the use of complicated metamaterial-based structures as well as relying on destructive interference to eliminate back reflections. Here, we have demonstrated both theoretically and ex perimentally that such perfect absorption can be achieved using a naturally occurring material, hexagonal boron nitride (hBN) due to its high optical anisotropy without the requirement of interference effects to absorb the incident field. This effect was observed for p-polarized light within the mid-infrared spectral range, and we provide the full theory describing the origin of the perfect absorption as well as the methodology for achieving this effect with other materials. Furthermore, while this is reported for the uniaxial crystal hBN, this is equally applicable to biaxial crystals and more complicated crystal structures. Interference-less absorption is of fundamental interest to the field of optics; moreover, such materials may provide additional layers of flexibility in the design of frequency selective surfaces, absorbing coatings and sensing devices operating in the infrared.
Highly confined and low-loss hyperbolic phonon polaritons (HPhPs) sustained in van der Waals crystals exhibit outstanding capabilities of concentrating long-wave electromagnetic fields deep to the subwavelength region. Precise tuning on the HPhP prop agation characteristics remains a great challenge for practical applications such as nanophotonic devices and circuits. Here, we show that by taking advantage of the varying air gaps in a van der Waals {alpha}-MoO3 crystal suspended gradiently, it is able to tune the wavelengths and dampings of the HPhPs propagating inside the {alpha}-MoO3. The results indicate that the dependences of polariton wavelength on gap distance for HPhPs in lower and upper Reststrahlen bands are opposite to each other. Most interestingly, the tuning range of the polariton wavelengths for HPhPs in the lower band, which exhibit in-plane hyperbolicities, is wider than that for the HPhPs in the upper band of out-of-plane hyperbolicities. A polariton wavelength elongation up to 160% and a reduction of damping rate up to 35% are obtained. These findings can not only provide fundamental insights into manipulation of light by polaritonic crystals at nanoscale, but also open up new opportunities for tunable nanophotonic applications.
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl, Br, I). Below Ts, a long-range ferromagnetic (FM) transition emerges at Tc ~ 50 K. The local moment of V in VI3 is close to the high-spin state V3+ ion (S = 1). Theoretical calculation suggests that VI3 may be a Mott insulator with the band gap of about 0.84 eV. In addition, VI3 has a relative small interlayer binding energy and can be exfoliated easily down to few layers experimentally. Therefore, VI3 is a candidate of two-dimensional FM semiconductor. It also provides a novel platform to explore 2D magnetism and vdW heterostructures in S = 1 system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا