ﻻ يوجد ملخص باللغة العربية
Symmetry energy behavior of scalar mesons interactions is analyzed within the framework of the standard relativistic mean field model. Whereas the presence of the $delta$ meson itself makes the symmetry energy stiffer, the crossing term $deltatextrm{-}sigma$ allows its slope to decrease to the suggested experimental value. Moreover, such controlling of the symmetry energy does not significantly affect the stiffness of the equation of state and acceptable neutron star masses result. Interestingly, for the most plausible value of the symmetry energy slope, the phase transition occurs in the neutron star core.
In the framework of the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model, effects of the symmetry energy on the evolutions of free n/p ratio and charged pion ratio in the semi-central collision of $^{197}$Au+$^{197}$Au at an incident bea
Emissions of free neutrons and protons from the central collisions of 124Sn+124Sn and 112Sn+112Sn reactions are simulated using the Improved Quantum Molecular Dynamics model with two different density dependence of the symmetry energy in the nuclear
We study effects of the Pauli principle on the potential energy of two-cluster systems. The object of the investigation is the lightest nuclei of p-shell with a dominant $alpha$-cluster channel. For this aim we construct matrix elements of two-cluste
The decomposition of nuclear symmetry energy into spin and isospin components is discussed to elucidate the underlying properties of the NN bare interaction. This investigation was carried out in the framework of the Brueckner-Hartree-Fock theory of
In this work we investigate protoneutron star properties within a modified version of the quark coupling model (QMC) that incorporates a omega-rho interaction plus kaon condensed matter at finite temperature. Fixed entropy and trapped neutrinos are t