ﻻ يوجد ملخص باللغة العربية
We consider the Schrodinger operator [ P=h^2 Delta_g + V ] on $mathbb{R}^n$ equipped with a metric $g$ that is Euclidean outside a compact set. The real-valued potential $V$ is assumed to be compactly supported and smooth except at conormal singularities of order $-1-alpha$ along a compact hypersurface $Y.$ For $alpha>2$ (or even $alpha>1$ if the classical flow is unique), we show that if $E_0$ is a non-trapping energy for the classical flow, then the operator $P$ has no resonances in a region [ [E_0 - delta, E_0 + delta] - i[0, u_0 h log(1/h)]. ] The constant $ u_0$ is explicit in terms of $alpha$ and dynamical quantities. We also show that the size of this resonance-free region is optimal for the class of piecewise-smooth potentials on the line.
Let $(X,g)$ be a compact manifold with conic singularities. Taking $Delta_g$ to be the Friedrichs extension of the Laplace-Beltrami operator, we examine the singularities of the trace of the half-wave group $e^{- i t sqrt{ smash[b]{Delta_g}}}$ arisin
We establish propagation of singularities for the semiclassical Schrodinger equation, where the potential is conormal to a hypersurface. We show that semiclassical wavefront set propagates along generalized broken bicharacteristics, hence reflection
We prove the solvability in Sobolev spaces of the conormal derivative problem for the stationary Stokes system with irregular coefficients on bounded Reifenberg flat domains. The coefficients are assumed to be merely measurable in one direction, whic
We study Green functions for stationary Stokes systems satisfying the conormal derivative boundary condition. We establish existence, uniqueness, and various estimates for the Green function under the assumption that weak solutions of the Stokes syst
The paper is a comprehensive study of the $L_p$ and the Schauder estimates for higher-order divergence type parabolic systems with discontinuous coefficients in the half space and cylindrical domains with conormal derivative boundary condition. For t