ﻻ يوجد ملخص باللغة العربية
Stochastic optimization finds a wide range of applications in operations research and management science. However, existing stochastic optimization techniques usually require the information of random samples (e.g., demands in the newsvendor problem) or the objective values at the sampled points (e.g., the lost sales cost), which might not be available in practice. In this paper, we consider a new setup for stochastic optimization, in which the decision maker has access to only comparative information between a random sample and two chosen decision points in each iteration. We propose a comparison-based algorithm (CBA) to solve such problems in one dimension with convex objective functions. Particularly, the CBA properly chooses the two points in each iteration and constructs an unbiased gradient estimate for the original problem. We show that the CBA achieves the same convergence rate as the optimal stochastic gradient methods (with the samples observed). We also consider extensions of our approach to multi-dimensional quadratic problems as well as problems with non-convex objective functions. Numerical experiments show that the CBA performs well in test problems.
In this work, we propose a distributed algorithm for stochastic non-convex optimization. We consider a worker-server architecture where a set of $K$ worker nodes (WNs) in collaboration with a server node (SN) jointly aim to minimize a global, potenti
We lower bound the complexity of finding $epsilon$-stationary points (with gradient norm at most $epsilon$) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries
In this paper we propose several adaptive gradient methods for stochastic optimization. Unlike AdaGrad-type of methods, our algorithms are based on Armijo-type line search and they simultaneously adapt to the unknown Lipschitz constant of the gradien
In this study, we present a general framework of outer approximation algorithms to solve convex vector optimization problems, in which the Pascoletti-Serafini (PS) scalarization is solved iteratively. This scalarization finds the minimum distance fro
In this paper, we consider a stochastic distributed nonconvex optimization problem with the cost function being distributed over $n$ agents having access only to zeroth-order (ZO) information of the cost. This problem has various machine learning app