ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Out-of-Equilibrium Cosmology

65   0   0.0 ( 0 )
 نشر من قبل Sayantan Choudhury
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, our prime focus is to study the one to one correspondence between the conduction phenomena in electrical wires with impurity and the scattering events responsible for particle production during stochastic inflation and reheating implemented under a closed quantum mechanical system in early universe cosmology. In this connection, we also present a derivation of fourth order corrected version of the Fokker Planck equation and its analytical solution for studying the dynamical features of the particle creation events in the stochastic inflation and reheating stage of the universe. It is explicitly shown from our computation that quantum corrected Fokker Planck equation describe the particle creation phenomena better for Dirac delta type of scatterer. In this connection, we additionally discuss It$hat{o}$, Stratonovich prescription and the explicit role of finite temperature effective potential for solving the probability distribution profile. Furthermore, we extend our discussion to describe the quantum description of randomness involved in the dynamics. We also present a computation to derive the expression for the measure of the stochastic non-linearity arising in the stochastic inflation and reheating epoch of the universe, often described by Lyapunov Exponent. Apart from that, we quantify the quantum chaos arising in a closed system by a more strong measure, commonly known as Spectral Form Factor using the principles of Random Matrix Theory (RMT). Additionally, we discuss the role of out of time order correlation (OTOC) function to describe quantum chaos in the present non-equilibrium field theoretic setup. Finally, for completeness, we also provide a bound on the measure of quantum chaos arising due to the presence of stochastic non-linear dynamical interactions into the closed quantum system of the early universe in a completely model-independent way.



قيم البحث

اقرأ أيضاً

306 - J. Eisert , M. Friesdorf , 2014
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance s of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.
We address the out-of-equilibrium thermodynamics of an isolated quantum system consisting of a cavity optomechanical device. We explore the dynamical response of the system when driven out of equilibrium by a sudden quench of the coupling parameter a nd compute analytically the full distribution of the work generated by the process. We consider linear and quadratic optomechanical coupling, where the cavity field is parametrically coupled to either the position or the square of the position of a mechanical oscillator, respectively. In the former case we find that the average work generated by the quench is zero, whilst the latter leads to a non-zero average value. Through fluctuations theorems we access the most relevant thermodynamical figures of merit, such as the free energy difference and the amount of irreversible work generated. We thus provide a full characterization of the out-of-equilibrium thermodynamics in the quantum regime for nonlinearly coupled bosonic modes. Our study is the first due step towards the construction and full quantum analysis of an optomechanical machine working fully out of equilibrium.
While the equilibrium properties, states, and phase transitions of interacting systems are well described by statistical mechanics, the lack of suitable state parameters has hindered the understanding of non-equilibrium phenomena in diverse settings, from glasses to driven systems to biology. The length of a losslessly compressed data file is a direct measure of its information content: The more ordered the data is, the lower its information content and the shorter the length of its encoding can be made. Here, we describe how data compression enables the quantification of order in non-equilibrium and equilibrium many-body systems, both discrete and continuous, even when the underlying form of order is unknown. We consider absorbing state models on and off-lattice, as well as a system of active Brownian particles undergoing motility-induced phase separation. The technique reliably identifies non-equilibrium phase transitions, determines their character, quantitatively predicts certain critical exponents without prior knowledge of the order parameters, and reveals previously unknown ordering phenomena. This technique should provide a quantitative measure of organization in condensed matter and other systems exhibiting collective phase transitions in and out of equilibrium.
We discuss minisuperspace models within the framework of varying physical constants theories including $Lambda$-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansatze for the variability of constants: $c(a) = c_0 a^n$ and $G(a)=G_0 a^q$. We find that most of the varying $c$ and $G$ minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe from nothing ($a=0)$ to a Friedmann geometry with the scale factor $a_t$ is large for growing $c$ models and is strongly suppressed for diminishing $c$ models. As for $G$ varying, the probability of tunneling is large for $G$ diminishing, while it is small for $G$ increasing. In general, both varying $c$ and $G$ change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.
We present the real-time renormalization group (RTRG) method as a method to describe the stationary state current through generic multi-level quantum dots with a complex setup in nonequilibrium. The employed approach consists of a very rudiment appro ximation for the RG equations which neglects all vertex corrections while it provides a means to compute the effective dot Liouvillian self-consistently. Being based on a weak-coupling expansion in the tunneling between dot and reservoirs, the RTRG approach turns out to reliably describe charge fluctuations in and out of equilibrium for arbitrary coupling strength, even at zero temperature. We confirm this in the linear response regime with a benchmark against highly-accurate numerically renormalization group data in the exemplary case of three-level quantum dots. For small to intermediate bias voltages and weak Coulomb interactions, we find an excellent agreement between RTRG and functional renormalization group data, which can be expected to be accurate in this regime. As a consequence, we advertise the presented RTRG approach as an efficient and versatile tool to describe charge fluctuations theoretically in quantum dot systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا