ﻻ يوجد ملخص باللغة العربية
We present the analysis of the simultaneous high resolution images from the {it Hubble Space Telescope} and Keck Adaptive Optics system of the planetary event OGLE-2012-BLG-0950 that determine that the system consists of a $0.58 pm 0.04 rm{M}_odot$ host star orbited by a $39pm 8 rm{M}_oplus$ planet of at projected separation of $2.54 pm 0.23,$AU. The planetary system is located at a distance of $2.19pm 0.23$ kpc from Earth. This is the second microlens planet beyond the snow line with a mass measured to be in the mass range $20$--$80 rm{M}_oplus$. The runaway gas accretion process of the core accretion model predicts few planets in this mass range, because giant planets are thought to be growing rapidly at these masses and they rarely complete growth at this mass. So, this result suggests that the core accretion theory may need revision. This analysis also demonstrates the techniques that will be used to measure the masses of planets and their host stars by the WFIRST exoplanet microlensing survey: one-dimensional microlensing parallax combined with the separation and brightness measurement of the unresolved source and host stars to yield multiple redundant constraints on the masses and distance of the planetary system.
We present the discovery of a planet on a very wide orbit in the microlensing event OGLE-2012-BLG-0838. The signal of the planet is well separated from the main peak of the event and the planet-star projected separation is found to be twice larger th
We analyze OGLE-2007-BLG-050, a high magnification microlensing event (A ~ 432) whose peak occurred on 2 May, 2007, with pronounced finite-source and parallax effects. We compute planet detection efficiencies for this event in order to determine its
We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence
We report discovery of the lowest mass ratio exoplanet to be found by the microlensing method in the light curve of the event OGLE~2016--BLG--1195. This planet revealed itself as a small deviation from a microlensing single lens profile from an exami
Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interp