ترغب بنشر مسار تعليمي؟ اضغط هنا

WFIRST Exoplanet Mass Measurement Method Finds a Planetary Mass of $39pm 8 M_oplus$ for OGLE-2012-BLG-0950Lb

61   0   0.0 ( 0 )
 نشر من قبل Aparna Bhattacharya
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of the simultaneous high resolution images from the {it Hubble Space Telescope} and Keck Adaptive Optics system of the planetary event OGLE-2012-BLG-0950 that determine that the system consists of a $0.58 pm 0.04 rm{M}_odot$ host star orbited by a $39pm 8 rm{M}_oplus$ planet of at projected separation of $2.54 pm 0.23,$AU. The planetary system is located at a distance of $2.19pm 0.23$ kpc from Earth. This is the second microlens planet beyond the snow line with a mass measured to be in the mass range $20$--$80 rm{M}_oplus$. The runaway gas accretion process of the core accretion model predicts few planets in this mass range, because giant planets are thought to be growing rapidly at these masses and they rarely complete growth at this mass. So, this result suggests that the core accretion theory may need revision. This analysis also demonstrates the techniques that will be used to measure the masses of planets and their host stars by the WFIRST exoplanet microlensing survey: one-dimensional microlensing parallax combined with the separation and brightness measurement of the unresolved source and host stars to yield multiple redundant constraints on the masses and distance of the planetary system.



قيم البحث

اقرأ أيضاً

We present the discovery of a planet on a very wide orbit in the microlensing event OGLE-2012-BLG-0838. The signal of the planet is well separated from the main peak of the event and the planet-star projected separation is found to be twice larger th an the Einstein ring radius, which roughly corresponds to a projected separation of ~4 AU. Similar planets around low-mass stars are very hard to find using any technique other than microlensing. We discuss microlensing model fitting in detail and discuss the prospects for measuring the mass and distance of lens system directly.
125 - V. Batista , Subo Dong , A. Gould 2009
We analyze OGLE-2007-BLG-050, a high magnification microlensing event (A ~ 432) whose peak occurred on 2 May, 2007, with pronounced finite-source and parallax effects. We compute planet detection efficiencies for this event in order to determine its sensitivity to the presence of planets around the lens star. Both finite-source and parallax effects permit a measurement of the angular Einstein radius theta_E = 0.48 +/- 0.01 mas and the parallax pi_E = 0.12 +/- 0.03, leading to an estimate of the lens mass M = 0.50 +/- 0.14 M_Sun and its distance to the observer D_L = 5.5 +/- 0.4 kpc. This is only the second determination of a reasonably precise (<30%) mass estimate for an isolated unseen object, using any method. This allows us to calculate the planetary detection efficiency in physical units (r_perp, m_p), where r_perp is the projected planet-star separation and m_p is the planet mass. When computing planet detection efficiency, we did not find any planetary signature and our detection efficiency results reveal significant sensitivity to Neptune-mass planets, and to a lesser extent Earth-mass planets in some configurations. Indeed, Jupiter and Neptune-mass planets are excluded with a high confidence for a large projected separation range between the planet and the lens star, respectively [0.6 - 10] and [1.4 - 4] AU, and Earth-mass planets are excluded with a 10% confidence in the lensing zone, i.e. [1.8 - 3.1] AU.
82 - Y. Hirao , A. Udalski , T. Sumi 2016
We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio $q=(1.58pm0.15)times10^{-3}$. By conducting a Bayesian analysis, we estimate that the host star is an M-dwarf star with a mass of $M_{rm L}=0.29_{-0.16}^{+0.33} M_{odot}$ located at $D_{rm L}=6.7_{-1.2}^{+1.1} {rm kpc}$ away from the Earth and the companions mass is $m_{rm P}=0.47_{-0.26}^{+0.54} M_{rm Jup}$. The projected planet-host separation is $a_{perp}=1.6_{-0.3}^{+0.4} {rm AU}$. Because the lens-source relative proper motion is relatively high, future high resolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M-dwarf and such systems are commonly detected by gravitational microlensing. This adds an another example of a possible pileup of sub-Jupiters $(0.2 < m_{rm P}/M_{rm Jup} < 1)$ in contrast to a lack of Jupiters ($sim 1 - 2 M_{rm Jup}$) around M-dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M-dwarfs.
We report discovery of the lowest mass ratio exoplanet to be found by the microlensing method in the light curve of the event OGLE~2016--BLG--1195. This planet revealed itself as a small deviation from a microlensing single lens profile from an exami nation of the survey data soon after the planetary signal. The duration of the planetary signal is $sim 2.5,$hours. The measured ratio of the planet mass to its host star is $q = 4.2pm 0.7 times10^{-5}$. We further estimate that the lens system is likely to comprise a cold $sim$3 Earth mass planet in a $sim,$2 AU wide orbit around a 0.2 Solar mass star at an overall distance of 7.1 kpc.
115 - H. Park , C. Han , A. Gould 2014
Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interp reting the lens system, and thus understanding the causes of different types of degeneracy is important. In this work, we show that incomplete coverage of a planetary perturbation can result in degenerate solutions even for events where the planetary signal is detected with a high level of statistical significance. We demonstrate the degeneracy for an actually observed event OGLE-2012-BLG-0455/MOA-2012-BLG-206. The peak of this high-magnification event $(A_{rm max}sim400)$ exhibits very strong deviation from a point-lens model with $Deltachi^{2}gtrsim4000$ for data sets with a total number of measurement 6963. From detailed modeling of the light curve, we find that the deviation can be explained by four distinct solutions, i.e., two very different sets of solutions, each with a two-fold degeneracy. While the two-fold (so-called close/wide) degeneracy is well-understood, the degeneracy between the radically different solutions is not previously known. The model light curves of this degeneracy differ substantially in the parts that were not covered by observation, indicating that the degeneracy is caused by the incomplete coverage of the perturbation. It is expected that the frequency of the degeneracy introduced in this work will be greatly reduced with the improvement of the current lensing survey and follow-up experiments and the advent of new surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا