ﻻ يوجد ملخص باللغة العربية
The Dual QCD (DQCD) framework, based on the ideas of t Hooft and Witten, and developed by Bill Bardeen, Jean-Marc Gerard and myself in the 1980s is not QCD, a theory of quarks and gluons, but a successful low energy approximation of it when applied to $Ktopipi$ decays and $K^0-bar K^0$ mixing. After years of silence, starting with 2014, this framework has been further developed in order to improve the SM prediction for the ratio $epsilon/epsilon$, the $Delta I=1/2$ rule and $hat B_K$. Most importantly, this year it has been used for the calculation of all $Ktopipi$ hadronic matrix elements of BSM operators which opened the road for the general study of $epsilon/epsilon$ in the context of the SM effective theory (SMEFT). This talk summarizes briefly the past successes of this framework and discusses recent developments which lead to a master formula for $epsilon/epsilon$ valid in any extension of the SM. This formula should facilitate the search for new physics responsible for the $epsilon/epsilon$ anomaly hinted by 2015 results from lattice QCD and DQCD.
We perform for the first time a direct calculation of on-shell $Ktopipi$ hadronic matrix elements of chromomagnetic operators (CMO) in the Standard Model and beyond. To his end, we use the successful Dual QCD (DQCD) approach in which we also consider
We calculate BSM hadronic matrix elements for $K^0-bar K^0$ mixing in the Dual QCD approach (DQCD). The ETM, SWME and RBC-UKQCD lattice collaborations find the matrix elements of the BSM density-density operators $mathcal{O}_i$ with $i=2-5$ to be rat
We derive a low-energy quantum field theory from quantum chromodynamics (QCD) that holds in the limit of a very large coupling. All the parameters of the bare theory are fixed through QCD. Low-energy limit is obtained through a mapping theorem betwee
The Quantum Chromodynamics (QCD) coupling, $alpha_s$, is not a physical observable of the theory since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by $hatalpha_s$, whose r
Correlations between the QCD coupling alpha_s, the gluon condensate < alpha_s G^2 >, and the c,b-quark running masses m_c,b in the MS-scheme are explicitly studied (for the first time) from the (axial-)vector and (pseudo)scalar charmonium and bottomi