ﻻ يوجد ملخص باللغة العربية
Extracting parton distribution functions (PDFs) from lattice QCD calculation of quasi-PDFs has been actively pursued in recent years. We extend our proof of the multiplicative renormalizability of quasi-quark operators in Ref. [1] to quasi-gluon operators, and demonstrated that quasi-gluon operators could be multiplicatively renormalized to all orders in perturbation theory, without mixing with other operators. We find that using a gauge-invariant UV regulator is essential for achieving this proof. With the multiplicative renormalizability of both quasi-quark and quasi-gluon operators, and QCD collinear factorization of hadronic matrix elements of there operators into PDFs, extracting PDFs from lattice QCD calculated hadronic matrix elements of quasi-parton operators could have a solid theoretical foundation.
We propose a revised definition of quasi-distributions within the framework of large-momentum effective theory (LaMET) that improves convergence towards the large-momentum limit. Since the definition of quasi-distributions is not unique, each choice
We discuss the structure of the parton quasi-distributions (quasi-PDFs) $Q(y, P_3)$ outside the canonical $-1 leq y leq 1$ support region of the usual parton distribution functions (PDFs). Writing the $y^n$ moments of $Q(y, P_3)$ in terms of the comb
Recently the concept of quasi parton distributions (quasi-PDFs) for hadrons has been proposed. Quasi-PDFs are defined through spatial correlation functions and as such can be computed numerically using quantum chromodynamics on a four-dimensional lat
Two-loop anomalous dimensions and one-loop renormalization scheme matching factors are calculated for six-quark operators responsible for neutron-antineutron transitions. When combined with lattice QCD determinations of the matrix elements of these o
We present the first Monte Carlo based global QCD analysis of spin-averaged and spin-dependent parton distribution functions (PDFs) that includes nucleon isovector matrix elements in coordinate space from lattice QCD. We investigate the degree of uni