ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum beats and metrology in a rapidly rotating Nitrogen-Vacancy center

104   0   0.0 ( 0 )
 نشر من قبل Z. H. Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the dynamical behavior and quantum metrology in a rotating Nitrogen-Vacancy(NV) center system which is subject to an external magnetic field. Based on the recently realized rapid rotation of nano-rotor [J. Ahn, et. al., Phys. Rev. Lett. 121, 033603 (2018) and R. Reimann, et. al., Phys. Rev. Lett. 121, 033602 (2018)], the frequency of the rotation is close to that of the intrinsic frequency of the NV center system, we predict the quantum beats phenomenon in the time domain and show that the quantum metrology can be enhanced by the superposition effect in our system.

قيم البحث

اقرأ أيضاً

We theoretically propose a method to realize optical nonreciprocity in rotating nano-diamond with a nitrogen-vacancy (NV) center. Because of the relative motion of the NV center with respect to the propagating fields, the frequencies of the fields ar e shifted due to the Doppler effect. When the control and probe fields are incident to the NV center from the same direction, the two-photon resonance still holds as the Doppler shifts of the two fields are the same. Thus, due to the electromagnetically-induced transparency (EIT), the probe light can pass through the NV center nearly without absorption. However, when the two fields propagate in opposite directions, the probe light can not effectively pass through the NV center as a result of the breakdown of two-photon resonance.
Quantum mechanical systems lose coherence through interactions with external environments---a process known as decoherence. Although decoherence is detrimental for most of the tasks in quantum information processing, a substantial degree of decoheren ce is crucial for boosting the efficiency of quantum processes, for example, in quantum biology. The key to the success in simulating those open quantum systems is therefore the ability of controlling decoherence, instead of eliminating it. Here we focus on the problem of simulating quantum open systems with Nitrogen-Vacancy centers, which has become an increasingly important platform for quantum information processing tasks. Essentially, we developed a new set of steering pulse sequences for controlling various coherence times of Nitrogen-Vacancy centers; our method is based on a hybrid approach that exploits ingredients in both digital and analog quantum simulations to dynamically couple or decouple the system with the physical environment. Our numerical simulations, based on experimentally-feasible parameters, indicate that decoherence of Nitrogen-Vacancy centers can be controlled externally to a very large extend.
Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid state systems. Here we present a protocol that achieves a complete set of selective single and two-qubit gates on nuclear spins in such an ensemble in diamond facilitated by a nearby NV center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99% . Notably, our method can be applied to weakly coupled, distant, spins and therefore represents a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.
Quantum state tomography (QST) is the procedure for reconstructing unknown quantum states from a series of measurements of different observables. Depending on the physical system, different sets of observables have been used for this procedure. In th e case of spin-qubits, the most common procedure is to measure the transverse magnetization of the system as a function of time. Here, we present a different scheme that relies on time-independent observables and therefore does not require measurements at different evolution times, thereby greatly reducing the overall measurement time. To recover the full density matrix, we use a set of unitary operations that transform the density operator elements into the directly measurable observable. We demonstrate the performance of this scheme in the electron-nuclear spin system of the nitrogen vacancy center in diamond.
Quantum computers have the potential to speed up certain problems that are hard for classical computers. Hybrid systems, such as the nitrogen vacancy (NV) center in diamond, are among the most promising systems to implement quantum computing, provide d the control of the different types of qubits can be efficiently implemented. In the case of the NV center, the anisotropic hyperfine interaction allows one to control the nuclear spins indirectly, through gate operations targeting the electron spin, combined with free precession. Here we demonstrate that this approach allows one to implement a full quantum algorithm, using the example of Grovers quantum search in a single NV center, whose electron is coupled to a carbon nuclear spin. The results clearly demonstrate the advantage of the quantum algorithm over the classical case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا