ﻻ يوجد ملخص باللغة العربية
Sensing the medical scenario can ensure the safety during the surgical operations. So, in this regard, a monitor platform which can obtain the accurate location information of the surgery room is desperately needed. Compared to 2D camera image, 3D data contains more information of distance and direction. Therefore, 3D sensors are more suitable to be used in surgical scene monitoring. However, each 3D sensor has its own limitations. For example, Lidar (Light Detection and Ranging) can detect large-scale environment with high precision, but the point clouds or depth maps are very sparse. As for commodity RGBD sensors, such as Kinect, can accurately capture denser data, but limited to a small range from 0.5 to 4.5m. So, a proper method which can address these problems for fusing different modalities data is important. In this paper, we proposed a method which can fuse different modalities 3D data to get a large-scale and dense point cloud. The key contributions of our work are as follows. First, we proposed a 3D data collecting system to reconstruct the medical scenes. By fusing the Lidar and Kinect data, a large-scale medical scene with more details can be reconstructed. Second, we proposed a location-based fast point clouds registration algorithm to deal with different modality datasets.
Film media is a rich form of artistic expression. Unlike photography, and short videos, movies contain a storyline that is deliberately complex and intricate in order to engage its audience. In this paper we present a large scale study comparing the
Deep learning-based point cloud registration models are often generalized from extensive training over a large volume of data to learn the ability to predict the desired geometric transformation to register 3D point clouds. In this paper, we propose
Scene flow is the three-dimensional (3D) motion field of a scene. It provides information about the spatial arrangement and rate of change of objects in dynamic environments. Current learning-based approaches seek to estimate the scene flow directly
Point cloud registration has been one of the basic steps of point cloud processing, which has a lot of applications in remote sensing and robotics. In this report, we summarized the basic workflow of target-less point cloud registration,namely corres
We introduce PC2WF, the first end-to-end trainable deep network architecture to convert a 3D point cloud into a wireframe model. The network takes as input an unordered set of 3D points sampled from the surface of some object, and outputs a wireframe