ترغب بنشر مسار تعليمي؟ اضغط هنا

MAGNUM survey: A MUSE-Chandra resolved view on ionized outflows and photoionization in the Seyfert galaxy NGC 1365

112   0   0.0 ( 0 )
 نشر من قبل Giacomo Venturi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ionized outflows, revealed by broad asymmetric wings of the [OIII] line, are commonly observed in AGN but the low intrinsic spatial resolution of observations has generally prevented a detailed characterization of their properties. The MAGNUM survey aims at overcoming these limitations by focusing on the nearest AGN, including NGC 1365, a nearby Seyfert galaxy (D~17 Mpc), hosting a low-luminosity AGN (Lbol ~ 2x10^43 erg/s). We want to obtain a detailed picture of the ionized gas in the central ~5 kpc of NGC 1365 in terms of physical properties, kinematics, and ionization mechanisms. We also aim to characterize the warm ionized outflow as a function of distance from the nucleus and its relation with the nuclear X-ray wind. We employed VLT/MUSE optical integral field spectroscopic observations to investigate the warm ionized gas and Chandra ACIS-S X-ray data for the hot highly-ionized phase. We obtained flux, kinematic, and diagnostic maps of the optical emission lines, which we used to disentangle outflows from disk motions and measure the gas properties down to a spatial resolution of ~70 pc. [OIII] emission mostly traces an AGN-ionized kpc-scale biconical outflow with velocities up to ~200 km/s. H{alpha} emission traces instead star formation in a circumnuclear ring and along the bar, where we detect non-circular motions. Soft X-rays are mostly due to thermal emission from the star-forming regions, but we could isolate the AGN photoionized component which matches the [OIII] emission. The mass outflow rate of the extended ionized outflow matches that of the nuclear X-ray wind and then decreases with radius. However, the hard X-ray emission from the circumnuclear ring suggests that star formation might contribute to the outflow. The integrated mass outflow rate, kinetic energy rate, and outflow velocity are broadly consistent with the typical relations observed in more luminous AGN.

قيم البحث

اقرأ أيضاً

AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational e vidence of radiative mode feedback in action has been finally found in quasars at $z$>1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales ($lesssim$100 pc), as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central $sim$5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.
We observed the nuclear region of the galaxy NGC 1365 with the integral field unit of the Gemini Multi Object Spectrograph mounted on the GEMINI-South telescope. The field of view covers $13^{primeprime} times 6^{primeprime}$ ($1173 times 541$ pc$^{2 }$) centered on the nucleus, at a spatial resolution of $52$ pc. The spectral coverage extends from $5600$ AA to $7000$ AA, at a spectral resolution $R=1918$. NGC 1365 hosts a Seyfert 1.8 nucleus, and exhibits a prominent bar extending out to $100^{primeprime}$ (9 kpc) from the nucleus. The field of view lies within the inner Lindblad resonance. Within this region, we found that the kinematics of the ionized gas (as traced by [OI], [NII], H$alpha$, and [SII]) is consistent with rotation in the large-scale plane of the galaxy. While rotation dominates the kinematics, there is also evidence for a fan-shaped outflow, as found in other studies based on the [OIII] emission lines. Although evidence for gas inflowing along nuclear spirals has been found in a few barred galaxies, we find no obvious signs of such features in the inner kiloparsec of NGC 1365. However, the emission lines exhibit a puzzling asymmetry that could originate from gas which is slower than the gas responsible for the bulk of the narrow-line emission. We speculate that it could be tracing gas which lost angular momentum, and is slowly migrating from the inner Lindblad resonance towards the nucleus of the galaxy.
NGC 7469 is a well known Luminous IR Galaxy, with a circumnuclear star formation ring ($sim 830$ pc radius) surrounding a Seyfert 1 AGN. Nuclear unresolved winds were previously detected in X-rays and UV, as well as an extended biconical outflow in I R coronal lines. We search for extended outflows by measuring the kinematics of the $mathrm{Hbeta}$ and [O III] $lambda 5007$ optical emission lines, in data of the VLT/MUSE integral field spectrograph. We find evidence of two outflow kinematic regimes: one slower regime extending across most of the star formation ring -- possibly driven by the massive star formation -- and a faster regime (with a maximum velocity of $-715 mathrm{km s^{-1}}$), only observed in [O III], in the western region between the AGN and the massive star forming regions of the ring, likely AGN-driven. This work shows a case where combined AGN/star-formation feedback can be effectively spatially-resolved, opening up a promising path toward a deeper understanding of feedback processes in the central kiloparsec of AGN.
We study the ionization and kinematics of the ionized gas in the nuclear region of the barred Seyfert 2 galaxy NGC~5643 using MUSE integral field observations in the framework of the MAGNUM (Measuring Active Galactic Nuclei Under MUSE Microscope) sur vey. The data were used to identify regions with different ionization conditions and to map the gas density and the dust extinction. We find evidence for a double sided ionization cone, possibly collimated by a dusty structure surrounding the nucleus. At the center of the ionization cone, outflowing ionized gas is revealed as a blueshifted, asymmetric wing of the [OIII] emission line, up to projected velocity v(10)~-450 km/s. The outflow is also seen as a diffuse, low luminosity radio and X-ray jet, with similar extension. The outflowing material points in the direction of two clumps characterized by prominent line emission with spectra typical of HII regions, located at the edge of the dust lane of the bar. We propose that the star formation in the clumps is due to `positive feedback induced by gas compression by the nuclear outflow, providing the first candidate for outflow induced star formation in a Seyfert-like radio quiet AGN. This suggests that positive feedback may be a relevant mechanism in shaping the black hole-host galaxy coevolution.
We report on strong X-ray variability and the Fe K band spectrum of the Seyfert galaxy IRAS 18325-5926 obtained from the 2001 XMM-Newton EPIC pn observation of a 120 ks duration. While the X-ray source is highly variable, the 8-10 keV band shows larg er variability than that of the lower energies. Amplified 8-10 keV flux variations are associated with two prominent flares of the X-ray source during the observation. The Fe K emission is peaked at 6.6 keV with moderate broadening. It is likely to originate from a highly ionized disc with the ionization parameter of log xi ~3. The Fe K line flux responds to the major flare, supporting its disc origin. There is a short burst of the Fe line flux with no relation to the continuum brightness for which we have no clear explanation. We also find transient, blueshifted Fe K absorption features, which can be identified with high-velocity (~0.2 c) outflows of highly ionized gas, as found in other active galaxies. The deepest absorption feature appears only briefly (~1 hr) at the onset of the major flare and disappears when the flare is declining. The rapid evolution of the absorption spectrum makes this source peculiar among the active galaxies with high velocity outflows. Another detection of the absorption feature also precedes the other flare. The variability of the absorption feature partly accounts for the excess variability in the 8-10 keV band where the absorption feature appears. Although no reverberation measurement is available, the black hole mass of 2e6 Msun is inferred from the X-ray variability. When this mass is assumed, the black hole is accreting at around the Eddington limit, which may fit the highly ionized disc and strong outflows observed in this galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا