ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for Refraction in Kepler Photometry of Gas Giants

50   0   0.0 ( 0 )
 نشر من قبل Holly Sheets
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Refraction can lead to a brightening just before ingress and just after egress of a transit, as light passes through the exoplanets atmosphere and is refracted into our line of sight. Refraction just outside of transit has been seen and modeled in our own solar system during transits of Venus. For short-period planets, the model of Sidis and Sari (2010 ApJ,720,904) implies refraction peaks typically under 100 parts per million and comparable in duration to ingress and egress. Kepler photometry currently provides the best opportunity for detecting refraction. We search for the signature of refraction just outside of transit in Kepler photometry of 45 gas giants and firmly rule out the Sidis and Sari model for four candidates.



قيم البحث

اقرأ أيضاً

Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. We use the model of Hui & Seager (2002) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of ~10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.
The physical state and properties of silicates at conditions encountered in the cores of gas giants, ice giants and of Earth like exoplanets now discovered with masses up to several times the mass of the Earth remains mostly unknown. Here, we report on theoretical predictions of the properties of silica, SiO$_2$, up to 4 TPa and about 20,000K using first principle molecular dynamics simulations based on density functional theory. For conditions found in the Super-Earths and in ice giants, we show that silica remains a poor electrical conductor up to 10 Mbar due to an increase in the Si-O coordination with pressure. For Jupiter and Saturn cores, we find that MgSiO$_3$ silicate has not only dissociated into MgO and SiO$_2$, as shown in previous studies, but that these two phases have likely differentiated to lead to a core made of liquid SiO$_2$ and solid (Mg,Fe)O.
364 - S. Ida , D. N. C. Lin , 2013
The ubiquity of planets and diversity of planetary systems reveal planet formation encompass many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physic al effects and to calibrate the range of physical conditions. Recent planet searches leads to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interaction between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (> 30AU) gas giants with nearly circular orbits.
The recent discoveries of massive planets on ultra-wide orbits of HR 8799 (Marois et al. 2008) and Fomalhaut (Kalas et al. 2008) present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation m echanisms--core accretion (with or without migration), scattering from the inner disk, or gravitational instability--could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes greater than 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for planet dimming with time. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass in their disks.
After protoplanets have acquired sufficient mass to open partial gaps in their natal protostellar disks, residual gas continues to diffuse onto horseshoe streamlines under effect of viscous dissipation, and meander in and out of the planets Hill sphe re. Within the Hill sphere, the horseshoe streamlines intercept gas flow in circumplanetary disks. The host stars tidal perturbation induces a barrier across the converging streamlines interface. Viscous transfer of angular momentum across this tidal barrier determines the rate of mass diffusion from the horseshoe streamlines onto the circumplanetary disks, and eventually the accretion rate onto the protoplanets. We carry out a series of numerical simulations to test the influence of this tidal barrier on super thermal planets. In weakly viscous disks, protoplanets accretion rate steeply decreases with their masses above the thermal limit. As their growth timescale exceeds the gas depletion time scale, their masses reach asymptotic values comparable to that of Jupiter. In relatively thick and strongly viscous disks, protoplanets asymptotic masses exceed several times that of Jupiter. Two dimensional numerical simulations show that such massive protoplanets strongly excite the eccentricity of nearby horseshoe streamlines, destabilize orderly flow, substantially enhance the diffusion rate across the tidal barrier, and elevate their growth rate until their natal disk is severely depleted. In contrast, eccentric streamlines remain stable in three dimensional simulations. Based on the upper falloff in the observe mass distribution of known exoplanets, we suggest their natal disks had relatively low viscosity alpha sim 0.001, modest thickness H/R sim 0.03 to 0.05, and limited masses comparable to that of minimum mass solar nebula model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا