ترغب بنشر مسار تعليمي؟ اضغط هنا

Opto Propeller Effect on Chiral Micro-Rotors

48   0   0.0 ( 0 )
 نشر من قبل Yiwen Tang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Manipulating mega biomolecules and micro-devices with light is highly appealing. Opto driving torque can propel micro-rotors to translational motion in viscous liquid, and then separate microsystems according to their handedness. We study the torque of dielectric loss generated by circular polarized lasers. The unwanted axial force which causes the handedness independent translational motion is cancelled by the counter propagating reflection beams. The propelling efficiency and the friction torque of water are obtained by solving the Navier-Stokes equation. In the interesting range of parameters, the numerical friction torque is found to be linear in the angular velocity with a slope depending on the radius or rotor as $r^3$. The time-dependent distribution of angular velocity is obtained as a solution of the Fokker-Planck equation, with which the thermal fluctuation is accounted. The results shed light on the micro-torque measurement and suggest a controllable micro-carrier.


قيم البحث

اقرأ أيضاً

375 - R. Ghobadi , S. Kumar , B. Pepper 2014
We propose to create and detect opto-mechanical entanglement by storing one component of an entangled state of light in a mechanical resonator and then retrieving it. Using micro-macro entanglement of light as recently demonstrated experimentally, on e can then create opto-mechanical entangled states where the components of the superposition are macroscopically different. We apply this general approach to two-mode squeezed states where one mode has undergone a large displacement. Based on an analysis of the relevant experimental imperfections, the scheme appears feasible with current technology.
The temporal statistics of incompressible fluid velocity and passive scalar fields in developed turbulent conditions is investigated by means of direct numerical simulations along the trajectories of self-propelled point-like probes drifting in a flo w. Such probes are characterised by a propulsion velocity which is fixed in intensity and direction; however, like vessels in a flow they are continuously deviated by their intended course as the result of local sweeping of the fluid flow. The recorded time-series by these moving probes represent the simplest realisation of transect measurements in a fluid flow environment. We investigate the non trivial combination of Lagrangian and Eulerian statistical properties displayed by the transect time-series. We show that, as a result of the homogeneity and isotropy of the flow, the single-point acceleration statistics of the probes follows a predictable trend at varying the propulsion speed, a feature that is also present in the scalar time-derivative fluctuations. Further, by focusing on two-time statistics we characterize how the Lagrangian-to-Eulerian transition occurs at increasing the propulsion velocity. The analysis of intermittency of temporal increments highlights in a striking way the opposite trends displayed by the fluid velocity and passive scalars.
65 - Wennan Zou 2017
In the theory of the Navier-Stokes equations, the viscous fluid in incompressible flow is modelled as a homogeneous and dense assemblage of constituent fluid particles with viscous stress proportional to rate of strain. The crucial concept of fluid f low is the velocity of the particle that is accelerated by the pressure and viscous interaction around it. In this paper, by virtue of the alternative constituent micro-finite element, we introduce a set of new intrinsic quantities, called the vortex fields, to characterise the relative orientation between elements and the feature of micro-eddies in the element, while the description of viscous interaction in fluid returns to the initial intuition that the interlayer friction is proportional to the slip strength. Such a framework enables us to reconstruct the dynamics theory of viscous fluid, in which the flowing fluid can be modelled as a finite covering of elements and consequently indicated by a space-time differential manifold that admits complex topological evolution.
Numerical simulation of Electroconvective vortices behavior in the presence of Couette flow between two infinitely long electrodes is investigated. The two-relaxation-time Lattice Boltzmann Method with fast Poisson solver solves for the spatiotempora l distribution of flow field, electric field, and charge density. Couette cross-flow is applied to the solutions after the electroconvective vortices are established. Increasing cross-flow velocity deforms the vortices and eventually suppresses them when threshold values of shear stress are reached.
We present a numerical study of the rheology of a two-fluid emulsion in dilute and semidilute conditions. The analysis is performed for different capillary numbers, volume fraction and viscosity ratio under the assumption of negligible inertia and ze ro buoyancy force. The effective viscosity of the system increases for low values of the volume fraction and decreases for higher values, with a maximum for about 20 % concentration of the disperse phase. When the dispersed fluid has lower viscosity, the normalised effective viscosity becomes smaller than 1 for high enough volume fractions. To single out the effect of droplet coalescence on the rheology of the emulsion we introduce an Eulerian force which prevents merging, effectively modelling the presence of surfactants in the system. When the coalescence is inhibited the effective viscosity is always greater than 1 and the curvature of the function representing the emulsion effective viscosity vs. the volume fraction becomes positive, resembling the behaviour of suspensions of deformable particles. The reduction of the effective viscosity in the presence of coalescence is associated to the reduction of the total surface of the disperse phase when the droplets merge, which leads to a reduction of the interface tension contribution to the total shear stress. The probability density function of the flow topology parameter shows that the flow is mostly a shear flow in the matrix phase, with regions of extensional flow when the coalescence is prohibited. The flow in the disperse phase, instead, always shows rotational components. The first normal stress difference is positive whereas the second normal difference is negative, with their ratio being constant with the volume fraction. Our results clearly show that the coalescence efficiency strongly affects the system rheology and neglecting droplet merging can lead to erroneous predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا