ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Contrast study of the candidate planets and protoplanetary disk around HD~100546

63   0   0.0 ( 0 )
 نشر من قبل Elena Sissa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nearby Herbig Be star HD100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk that is carved by at least 2 gaps. We observed the HD100546 environment with high contrast imaging exploiting several different observing modes of SPHERE, including datasets with/without coronagraphs, dual band imaging, integral field spectroscopy and polarimetry. The picture emerging from these different data sets is complex. Flux-conservative algorithms images clearly show the disk up to 200au. More aggressive algorithms reveal several rings and warped arms overlapping the main disk. The bright parts of this ring lie at considerable height over the disk mid-plane at about 30au. Our images demonstrate that the brightest wings close to the star in the near side of the disk are a unique structure, corresponding to the outer edge of the intermediate disk at ~40au. Modeling of the scattered light from the disk with a geometrical algorithm reveals that a moderately thin structure can well reproduce the light distribution in the flux-conservative images. We suggest that the gap between 44 and 113 au span between the 1:2 and 3:2 resonance orbits of a massive body located at ~70au that might coincide with the candidate planet HD100546b detected with previous thermal IR observations. In this picture, the two wings can be the near side of a ring formed by disk material brought out of the disk at the 1:2 resonance with the same massive object. While we find no clear evidence confirming detection of the planet candidate HD100546c in our data, we find a diffuse emission close to the expected position of HD100546b. This source can be described as an extremely reddened substellar object surrounded by a dust cloud or its circumplanetary disk. Its astrometry is broadly consistent with a circular orbital motion on the disk plane.



قيم البحث

اقرأ أيضاً

156 - Jaime E. Pineda 2014
The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimet er dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of $approx$50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.
We present Subaru/SCExAO+CHARIS broadband ($JHK$-band) integral field spectroscopy of HD 34700 A. CHARIS data recover HD 34700 As disk ring and confirm multiple spirals discovered in Monnier et al. (2019). We set limits on substellar companions of $s im12 M_{rm Jup}$ at $0farcs3$ (in the ring gap) and $sim5 M_{rm Jup}$ at $0farcs75$ (outside the ring). The data reveal darkening effects on the ring and spiral, although we do not identify the origin of each feature such as shadows or physical features related to the outer spirals. Geometric albedoes converted from the surface brightness suggests a higher scale height and/or prominently abundant sub-micron dust at position angle between $sim45^circ$ and $90^circ$. Spiral fitting resulted in very large pitch angles ($sim30-50^circ$) and a stellar flyby of HD 34700 B or infall from a possible envelope is perhaps a reasonable scenario to explain the large pitch angles.
248 - Catherine Walsh 2014
HD 100546 is a well-studied Herbig Be star-disk system that likely hosts a close-in companion with compelling observational evidence for an embedded protoplanet at 68 AU. We present ALMA observations of the HD 100546 disk which resolve the gas and du st structure at (sub)mm wavelengths. The CO emission (at 345.795 GHz) originates from an extensive molecular disk (390+/-20 AU in radius) whereas the continuum emission is more compact (230+/-20 AU in radius) suggesting radial drift of the mm-sized grains. The CO emission is similar in extent to scattered light images indicating well-mixed gas and um-sized grains in the disk atmosphere. Assuming azimuthal symmetry, a single-component power-law model cannot reproduce the continuum visibilities. The visibilities and images are better reproduced by a double-component model: a compact ring with a width of 21 AU centered at 26 AU and an outer ring with a width of 75+/-3 AU centered at 190+/-3 AU. The influence of a companion and protoplanet on the dust evolution is investigated. The companion at 10 AU facilitates the accumulation of mm-sized grains within a compact ring, ~ 20 - 30 AU, by ~ 10 Myr. The injection of a protoplanet at 1 Myr hastens the ring formation (~ 1.2 Myr) and also triggers the development of an outer ring (~ 100 - 200 AU). These observations provide additional evidence for the presence of a close-in companion and hint at dynamical clearing by a protoplanet in the outer disk.
Knowledge of the midplane temperature of protoplanetary disks is one of the key ingredients in theories of dust growth and planet formation. However, direct measurement of this quantity is complicated, and often depends on the fitting of complex mode ls to the data. In this paper we demonstrate a method to directly measure the midplane gas temperature from an optically thick molecular line, if the disk is moderately inclined. The only model assumption that enters is that the line is very optically thick, also in the midplane region where we wish to measure the temperature. Freeze-out of the molecule onto dust grains could thwart this. However, in regions that are expected to be warm enough to avoid freeze-out, this method should work. We apply the method to the CO 2-1 line channel maps of the disk around HD 163296. We find that the midplane temperature between 100 and 400 au drops only mildly from 25 K down to 18 K. While we see no direct evidence of the midplane being optically thin due to strong CO depletion by freeze-out, we cannot rule it out either. The fact that the inferred temperatures are close to the expected CO freeze-out temperature could be an indication of this. Incidently, for the disk around HD 163296 we also find dynamic evidence for a rather abrupt outer edge of the disk, suggestive of outside-in photoevaporation or truncation by an unseen companion.
We refine the gap size measurements of the disk surrounding the Herbig Ae star HD 100546 in the N band. Our new mid-infrared interferometric (MIDI) data have been taken with the UT baselines and span the full range of orientations. The correlated flu xes show a wavy pattern in which the minima separation links to a geometrical structure in the disk. We fit each correlated flux measurement with a spline function, deriving the corresponding spatial scale, while assuming that the pattern arises interferometrically due to the bright emission from the inner disk and the opposing sides of the wall of the outer disk. We then fit an ellipse to the derived separations at their corresponding position angles, thereby using the observations to constrain the disk inclination to i =47 +/- 1 degree and the disk position angle to PA =135.0 +/- 2.5 degree East of North, both of which are consistent with the estimated values in previous studies. We also derive the radius of the ellipse to 15.7 +/- 0.8 au. To confirm that the minima separations translate to a geometrical structure in the disk, we model the disk of HD 100546 using a semi-analytical approach taking into account the temperature and optical depth gradients. Using this model, we simultaneously reproduce the level and the minima of the correlated fluxes and constrain the gap size of the disk for each observation. The values obtained for the projected gap size in different orientations are consistent with the separation found by the geometrical model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا