ﻻ يوجد ملخص باللغة العربية
Precise stellar ages from asteroseismology have become available and can help setting stronger constraints on the evolution of the Galactic disc components. Recently, asteroseismology has confirmed a clear age difference in the solar annulus between two distinct sequences in the [$alpha$/Fe] versus [Fe/H] abundance ratios relation: the high-$alpha$ and low-$alpha$ stellar populations. We aim at reproducing these new data with chemical evolution models including different assumptions for the history and number of accretion events. We tested two different approaches: a revised version of the `two-infall model where the high-$alpha$ phase forms by a fast gas accretion episode and the low-$alpha$ sequence follows later from a slower gas infall rate, and the parallel formation scenario where the two disc sequences form coevally and independently. The revised `two-infall model including uncertainties in age and metallicity is capable of reproducing: i) the [$alpha$/Fe] vs. [Fe/H] abundance relation at different Galactic epochs, ii) the age$-$metallicity relation and the time evolution [$alpha$/Fe]; iii) the age distribution of the high-$alpha$ and low-$alpha$ stellar populations, iv) the metallicity distribution function. The parallel approach is not capable of properly reproduce the stellar age distribution, in particular at old ages. In conclusion, the best chemical evolution model is the revised `two-infall one, where a consistent delay of $sim$4.3 Gyr in the beginning of the second gas accretion episode is a crucial assumption to reproduce stellar abundances and ages.
The formation of the Galactic disc is an enthusiastically debated issue. Numerous studies and models seek to identify the dominant physical process(es) that shaped its observed properties. Taking advantage of the improved coverage of the inner Milky
We analyse from an observational perspective the formation history and kinematics of a Milky Way-like galaxy from a high-resolution zoom-in cosmological simulation that we compare to those of our Galaxy as seen by Gaia DR2 to better understand the or
We address the spatial scale, ionization structure, mass and metal content of gas at the Milky Way disk-halo interface detected as absorption in the foreground of seven closely-spaced, high-latitude halo blue horizontal branch stars (BHBs) with heigh
Observations indicate that a continuous supply of gas is needed to maintain observed star formation rates in large, disky galaxies. To fuel star formation, gas must reach the inner regions of such galaxies. Despite its crucial importance for galaxy e
The Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry and ages of its stars indicate. To understand the nature of its m