ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial expansion and speeds of type III electron beam sources in the solar corona

68   0   0.0 ( 0 )
 نشر من قبل Hamish A. S. Reid
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A component of space weather, electron beams are routinely accelerated in the solar atmosphere and propagate through interplanetary space. Electron beams interact with Langmuir waves resulting in type III radio bursts. Electron beams expand along the trajectory, and using kinetic simulations, we explore the expansion as the electrons propagate away from the Sun. Specifically, we investigate the front, peak and back of the electron beam in space from derived radio brightness temperatures of fundamental type III emission. The front of the electron beams travelled at speeds from 0.2c--0.7c, significantly faster than the back of the beam that travelled between 0.12c--0.35c. The difference in speed between the front and the back elongates the electron beams in time. The rate of beam elongation has a 0.98 correlation coefficient with the peak velocity; in-line with predictions from type III observations. The inferred speeds of electron beams initially increase close to the acceleration region and then decrease through the solar corona. Larger starting densities and harder initial spectral indices result in longer and faster type III sources. Faster electron beams have higher beam energy densities, produce type IIIs with higher peak brightness temperatures and shorter FWHM durations. Higher background plasma temperatures also increase speeds, particularly at the back of the beam. We show how our predictions of electron beam evolution influences type III bandwidth and drift-rates. Our radial predictions of electron beam speed and expansion can be tested by the upcoming in situ electron beam measurements made by Solar Orbiter and Parker Solar Probe.



قيم البحث

اقرأ أيضاً

Magnetic fields in the suns outer atmosphere -- the corona -- control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observa tions of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly-polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.
Solar type III radio bursts contain a wealth of information about the dynamics of electron beams in the solar corona and the inner heliosphere; currently unobtainable through other means. However, the motion of different regions of an electron beam ( front, middle and back) have never been systematically analysed before. We characterise the type III burst frequency-time evolution using the enhanced resolution of LOFAR in the frequency range 30 to 70 MHz and use this to probe electron beam dynamics. Methods. The rise, peak and decay times with a 0.2 MHz spectral resolution were defined for a collection of 31 type III bursts. The frequency evolution is used to ascertain the apparent velocities of the front, middle and back of the type III sources and the trends are interpreted using theoretical and numerical treatments. The type III time profile was better approximated by an asymmetric Gaussian profile, not an exponential as previously used. Rise and decay times increased with decreasing frequency and showed a strong correlation. Durations were smaller than previously observed. Drift rates from the rise times were faster than from the decay times, corresponding to inferred mean electron beam speeds for the front, middle and back of 0.2, 0.17, 0, 15 c, respectively. Faster beam speeds correlate with smaller type III durations. We also find type III frequency bandwidth decreases as frequency decreases. The different speeds naturally explain the elongation of an electron beam in space as it propagates through the heliosphere. The rate of expansion is proportional to the mean speed of the exciter; faster beams expand faster. Beam speeds are attributed to varying ensembles of electron energies at the front, middle and back of the beam.
We report on a comparison of the expansion speeds of limb coronal mass ejections (CMEs) between solar cycles 23 and 24. We selected a large number of limb CME events associated with soft X-ray flare size greater than or equal to M1.0 from both cycles . We used data and measurement tools available at the online CME catalog (https://cdaw.gsfc.nasa.gov) that consists of the properties of all CMEs detected by the Solar and Heliospheric Observatorys (SOHO) Large Angle and Spectrometric Coronagraph (LASCO). We found that the expansion speeds in cycle 24 are higher than those in cycle 23. We also found that the relation between radial and expansion speeds has different slopes in cycles 23 and 24. The cycle 24 slope is 45% higher than that in cycle 23. The expansion speed is also higher for a given radial speed. The difference increases with speed. For a 2000 km/s radial speed, the expansion speed in cycle 24 is ~48% higher. These results present additional evidence for the anomalous expansion of cycle 24-CMEs, which is due to the reduced total pressure in the heliosphere.
Most 1d hydrodynamic models of plasma confined to magnetic flux tubes assume circular cross-section of these tubes. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not in general maintain the sam e cross-sectional shape through their length and therefore the assumption of a circular cross-section is rarely true. We support our hypothesis with mathematical reasoning and numeric experiments. We demonstrate that lifting this assumption in realistic non-circular loops make apparent expansion of magnetic flux tubes consistent with that of observed coronal loops. We propose that in a bundle of ribbon-like loops those that are viewed along the wide direction would stand out against those that are viewed across the wide direction, due to the difference in their column depths. That would impose a bias towards selecting loops that appear not to be expanding seen projected in the plane of sky. An implication of this selection bias is that the preferentially selected non-circular loops would appear to have increased pressure scale height even if they are resolved by current instruments.
128 - Eduard P. Kontar 2019
Dynamics of an spatially limited electron beam in the inhomogeneous solar corona plasma is considered in the framework of weak turbulence theory when the temperature of the beam significantly exceeds that of surrounding plasma. The numerical solution of kinetic equations manifests that generally the beam accompanied by Langmuir waves propagates as a beam-plasma structure with a decreasing velocity. Unlike the uniform plasma case the structure propagates with the energy losses in the form of Langmuir waves. The results obtained are compared with the results of observations of type III bursts. It is shown that the deceleration of type III sources can be explained by the corona inhomogeneity. The frequency drift rates of the type III sources are found in a good agreement with the numerical results of beam dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا