ﻻ يوجد ملخص باللغة العربية
Spin correlations of the frustrated pyrochlore oxide Tb$_{2+x}$Ti$_{2-x}$O$_{7+y}$ have been investigated by using inelastic neutron scattering on single crystalline samples ($x=-0.007, 0.000,$ and $0.003$), which have the putative quantum-spin-liquid (QSL) or electric-quadrupolar ground states. Spin correlations, which are notably observed in nominally elastic scattering, show short-ranged correlations around $L$ points [$q = (tfrac{1}{2},tfrac{1}{2},tfrac{1}{2})$], tiny antiferromagnetic Bragg scattering at $L$ and $Gamma$ points, and pinch-point type structures around $Gamma$ points. The short-ranged spin correlations were analyzed using a random phase approximation (RPA) assuming the paramagnetic state and two-spin interactions among Ising spins. These analyses have shown that the RPA scattering intensity well reproduces the experimental data using temperature and $x$ dependent coupling constants of up to 10-th neighbor site pairs. This suggests that no symmetry breaking occurs in the QSL sample, and that a quantum treatment beyond the semi-classical RPA approach is required. Implications of the experimental data and the RPA analyses are discussed.
The ground states of the frustrated pyrochlore oxide Tb$_{2+x}$Ti$_{2-x}$O$_{7+y}$ have been studied by inelastic neutron scattering experiments. Three single-crystal samples are investigated; one shows no phase transition ($x=-0.007<x_{text{c}}sim -
Recent low temperature heat capacity (C$_P$) measurements on polycrystalline samples of the pyrochlore antiferromagnet Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$ have shown a strong sensitivity to the precise Tb concentration $x$, with a large anomaly exhibit
We study the magnetic structure of the stuffed (Tb-rich) pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$, using resonant elastic x-ray scattering (REXS). In order to disentangle contributions from Tb and Ir magnetic sublattices, experiments were per
The pyrochlore material $rm Ho_{2}Ti_{2}O_{7}$ has been suggested to show ``spin ice behaviour. We present neutron scattering and specific heat results that establish unambiguously that Ho$_2$Ti$_2$O$_7$ exhibits spin ice correlations at low temperat
The pyrochlore magnet Tb$_{2}$Ti$_{2}$O$_{7}$ shows a lack of magnetic order to low temperatures and is considered to be a quantum spin liquid candidate. We perform time-domain THz spectroscopy on high quality Tb$_{2}$Ti$_{2}$O$_{7}$ crystal and stud