ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-error-rejecting quantum state transmission of entangled photons for faithful quantum communication without calibrate reference frames

158   0   0.0 ( 0 )
 نشر من قبل Fu-Guo Deng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an alignment-free two-party polarization-entanglement transmission scheme for entangled photons by using only linear-optical elements, requiring neither ancillary photons nor calibrated reference frames. The scheme is robust against both the random channel noise and the instability of reference frames, and it is subsequently extended to multi-party Greenberger-Horne-Zeilinger state transmission. Furthermore, the success probabilities for two- and multi-party entanglement transmission are, in principle, improved to unity when active polarization controllers are used. The distinct characters of a simple structure, easy to be implemented, and a high fidelity and efficiency make our protocol very useful for long-distance quantum communications and distributed quantum networks in practical applications.

قيم البحث

اقرأ أيضاً

Error correcting codes with a universal set of transversal gates are the desiderata of realising quantum computing. Such codes, however, are ruled out by the Eastin-Knill theorem. Moreover, it also rules out codes which are covariant with respect to the action of transversal unitary operations forming continuous symmetries. In this work, starting from an arbitrary code, we construct approximate codes which are covariant with respect to local $SU(d)$ symmetries using quantum reference frames. We show that our codes are capable of efficiently correcting different types of erasure errors. When only a small fraction of the $n$ qudits upon which the code is built are erased, our covariant code has an error that scales as $1/n^2$, which is reminiscent of the Heisenberg limit of quantum metrology. When every qudit has a chance of being erased, our covariant code has an error that scales as $1/n$. We show that the error scaling is optimal in both cases. Our approach has implications for fault-tolerant quantum computing, reference frame error correction, and the AdS-CFT duality.
We report on theoretical and experimental demonstration of high-efficiency coupling of two-photon entangled states produced in the nonlinear process of spontaneous parametric down conversion into a single-mode fiber. We determine constraints for the optimal coupling parameters. This result is crucial for practical implementation of quantum key distribution protocols with entangled states.
We present an experimental realization of a robust quantum communication scheme [Phys. Rev. Lett. 93, 220501 (2004)] using pairs of photons entangled in polarization and time. Our method overcomes errors due to collective rotation of the polarization modes (e.g., birefringence in optical fiber or misalignment), is insensitive to the phases fluctuation of the interferometer, and does not require any shared reference frame including time reference, except the need to label different photons. The practical robustness of the scheme is further shown by implementing a variation of the Bennett-Brassard 1984 quantum key distribution protocol over 1 km optical fiber.
We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for single-photon transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled N-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.
Non-classical correlations arising in complex quantum networks are attracting growing interest, both from a fundamental perspective and for potential applications in information processing. In particular, in an entanglement swapping scenario a new ki nd of correlations arise, the so-called nonbilocal correlations that are incompatible with local realism augmented with the assumption that the sources of states used in the experiment are independent. In practice, however, bilocality tests impose strict constraints on the experimental setup and in particular to presence of shared reference frames between the parties. Here, we experimentally address this point showing that false positive nonbilocal quantum correlations can be observed even though the sources of states are independent. To overcome this problem, we propose and demonstrate a new scheme for the violation of bilocality that does not require shared reference frames and thus constitute an important building block for future investigations of quantum correlations in complex networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا