ﻻ يوجد ملخص باللغة العربية
In 1998, Carl Bender challenged the perceived wisdom of quantum mechanics that the Hamiltonian operator describing any quantum mechanical system has to be Hermitian. He showed that Hamiltonians that are invariant under combined parity-time (PT) symmetry transformations likewise can exhibit real eigenvalue spectra. These findings had a particularly profound impact in the field of photonics, where PT-symmetric potential landscapes can be implemented by appropriately distributing gain and loss. Following this approach, several hallmark features of PT symmetry were shown, such as the existence of non-orthogonal eigenmodes, non-reciprocal light evolution, diffusive coherent transport, and to study their implications in settings including PT-symmetric lasers and topological phase transitions. Similarly, PT-symmetry has enriched other research fields ranging from PT-symmetric atomic diffusion, superconducting wires, and PT-symmetric electronic circuits. Nevertheless, to this date, all experimental implementations of PT-symmetric systems have been restricted to one dimension, which is mostly due to limitations in the technologies at hand for realizing appropriate non-Hermitian potential landscapes. In this work, we report on the experimental realization and characterization of a two-dimensional PT-symmetric system by means of photonic waveguide lattices with judiciously designed refractive index landscape with alternating loss. A key result of our work is the demonstration of a non-Hermitian two-dimensional topological phase transition that coincides with the emergence of mid-gap edge states. Our findings pave the grounds for future investigations exploring the full potential of PT-symmetric photonics in higher dimensions. Moreover, our approach may even hold the key for realizing two-dimensional PT-symmetry also in other systems beyond photonics, such as matter waves and electronics.
We study corner states on a flat band in the square lattice. To this end, we introduce a two dimensional model including Su-Schrieffer-Heeger type bond alternation responsible for corner states as well as next-nearest neighbor hoppings yielding flat
Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained tremendous research attention. While the PT symmetric absorber has been observed in microwave metamaterials, the experimental demonstration of PT symmetric laser is
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-d
We propose an optical counterpart of the quantum spin Hall (QSH) effect in a two-dimensional photonic crystal composed of a gyrotropic medium exhibiting both gyroelectric and gyromagnetic properties simultaneously. Such QSH effect shows unidirectiona
Unidirectional reflectionless propagation (or transmission) is an interesting wave phenomenon observed in many $mathcal{PT}$-symmetric optical structures. Theoretical studies on unidirectional reflectionless transmission often use simple coupled-mode