ﻻ يوجد ملخص باللغة العربية
The prediction of magnetic skyrmions being used to change the way we store and process data has led to materials with Dzyaloshinskii-Moriya interaction coming into the focus of intensive research. So far, studies have looked mostly at magnetic systems composed of materials with single chirality. In a search for potential future spintronic devices, combination of materials with different chirality into a single system may represent an important new avenue for research. Using finite element micromagnetic simulations, we study an FeGe disk with two layers of different chirality. We show that for particular thicknesses of layers, a stable Bloch point emerges at the interface between two layers. In addition, we demonstrate that the system undergoes hysteretic behaviour and that two different types of Bloch point exist. These `head-to-head and `tail-to-tail Bloch point configurations can, with the application of an external magnetic field, be switched between. Finally, by investigating the time evolution of the magnetisation field, we reveal the creation mechanism of the Bloch point. Our results introduce a stable and manipulable Bloch point to the collection of particle-like state candidates for the development of future spintronic devices.
Cylindrical nanowires made of soft magnetic materials, in contrast to thin strips, may host domain walls of two distinct topologies. Unexpectedly, we evidence experimentally the dynamic transformation of topology upon wall motion above a field thresh
We resolve the domain-wall structure of the model antiferromagnet $text{Cr}_2text{O}_3$ using nanoscale scanning diamond magnetometry and second-harmonic-generation microscopy. We find that the 180$^circ$ domain walls are predominantly Bloch-like, an
Various properties of the energy band structures (electronic, phonon, etc.), including systematic band degeneracy, sticking and extremes, following from the full line group symmetry of the single-wall carbon nanotubes are established. The complete se
The 212 species of structural phase transitions which break macroscopic symmetry are analyzed with respect to the occurrence of time-reversal invariant vector and bidirector order parameters. The possibility of discerning the orientational domain sta
In a pristine monolayer graphene subjected to a constant electric field along the layer, the Bloch oscillation of an electron is studied in a simple and efficient way. By using the electronic dispersion relation, the formula of a semi-classical veloc