ترغب بنشر مسار تعليمي؟ اضغط هنا

Kiloparsec Scale Properties of Star-Formation Driven Outflows at z~2.3 in the SINS/zC-SINF AO Survey

332   0   0.0 ( 0 )
 نشر من قبل Rebecca Davies
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the relationship between star formation activity and outflow properties on kiloparsec scales in a sample of 28 star forming galaxies at $zsim$ 2-2.6, using adaptive optics assisted integral field observations from SINFONI on the VLT. The narrow and broad components of the H$alpha$ emission are used to simultaneously determine the local star formation rate surface density ($Sigma_{rm SFR}$), and the outflow velocity $v_{rm out}$ and mass outflow rate $dot{M}_{rm out}$, respectively. We find clear evidence for faster outflows with larger mass loading factors at higher $Sigma_{rm SFR}$. The outflow velocities scale as $v_{rm out}$ $propto$ $Sigma_{rm SFR}^{0.34 pm 0.10}$, which suggests that the outflows may be driven by a combination of mechanical energy released by supernova explosions and stellar winds, as well as radiation pressure acting on dust grains. The majority of the outflowing material does not have sufficient velocity to escape from the galaxy halos, but will likely be re-accreted and contribute to the chemical enrichment of the galaxies. In the highest $Sigma_{rm SFR}$ regions the outflow component contains an average of $sim$45% of the H$alpha$ flux, while in the lower $Sigma_{rm SFR}$ regions only $sim$10% of the H$alpha$ flux is associated with outflows. The mass loading factor, $eta$ = $dot{M}_{rm out}$/SFR, is positively correlated with $Sigma_{rm SFR}$ but is relatively low even at the highest $Sigma_{rm SFR}$: $eta lesssim$ 0.5 $times$ (380 cm$^{-3}$/n$_e$). This may be in tension with the $eta$ $gtrsim$ 1 required by cosmological simulations, unless a significant fraction of the outflowing mass is in other gas phases and has sufficient velocity to escape the galaxy halos.



قيم البحث

اقرأ أيضاً

We present the SINS/zC-SINF AO survey of 35 star-forming galaxies, the largest sample with deep adaptive optics-assisted (AO) near-infrared integral field spectroscopy at z~2. The observations, taken with SINFONI at the Very Large Telescope, resolve the Ha and [NII] line emission and kinematics on scales of ~1.5 kpc. In stellar mass, star formation rate, rest-optical colors and size, the AO sample is representative of its parent seeing-limited sample and probes the massive (M* ~ 2x10^9 - 3x10^11 Msun), actively star-forming (SFR ~ 10-600 Msun/yr) part of the z~2 galaxy population over a wide range in colors ((U-V)_rest ~ 0.15-1.5 mag) and half-light radii (R_e,H ~ 1-8.5 kpc). The sample overlaps largely with the main sequence of star-forming galaxies in the same redshift range to a similar K_AB = 23 magnitude limit; it has ~0.3 dex higher median specific SFR, ~0.1 mag bluer median (U-V)_rest color, and ~10% larger median rest-optical size. We describe the observations, data reduction, and extraction of basic flux and kinematic properties. With typically 3-4 times higher resolution and 4-5 times longer integrations (up to 23hr) than the seeing-limited datasets of the same objects, the AO data reveal much more detail in morphology and kinematics. The now complete AO observations confirm the majority of kinematically-classified disks and the typically elevated disk velocity dispersions previously reported based on subsets of the data. We derive typically flat or slightly negative radial [NII]/Ha gradients, with no significant trend with global galaxy properties, kinematic nature, or the presence of an AGN. Azimuthal variations in [NII]/Ha are seen in several sources and are associated with ionized gas outflows, and possible more metal-poor star-forming clumps or small companions. [Abridged]
We report the detection of ubiquitous powerful nuclear outflows in massive (> 10^11 Msun) z~2 star-forming galaxies (SFGs), which are plausibly driven by an Active Galactic Nucleus (AGN). The sample consists of the eight most massive SFGs from our SI NS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics (AO) assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Halpha and forbidden [NII] and [SII] line emission, with typical velocity FWHM ~ 1500 km/s, [NII]/Halpha ratio ~ 0.6, and intrinsic extent of 2 - 3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~ 60 Msun/yr and mass loading of ~ 3. At larger radii, a weaker broad component is detected but with lower FWHM ~ 485 km/s and [NII]/Halpha ~ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles, and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial to confirm the importance and energetics of the nuclear outflow phenomenon, and its connection to AGN activity and bulge growth.
As part of the SINS/zC-SINF surveys of high-z galaxy kinematics, we derive the radial distributions of H-alpha surface brightness, stellar mass surface density, and dynamical mass at ~2 kpc resolution in 19 z~2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. From these data we infer the radial distribution of the Toomre Q-parameter for these main-sequence star forming galaxies (SFGs), covering almost two decades of stellar mass (10^9.6 to 10^11.5 solar masses). In more than half of our SFGs, the H-alpha distributions cannot be fit by a centrally peaked distribution, such as an exponential, but are better described by a ring, or the combination of a ring and an exponential. At the same time the kinematic data indicate the presence of a mass distribution more centrally concentrated than a single exponential distribution for 5 of the 19 galaxies. The resulting Q-distributions are centrally peaked for all, and significantly exceed unity there for three quarters of the SFGs. The occurrence of H-alpha rings and of large nuclear Q-values is strongly correlated, and is more common for the more massive SFGs. While our sample is small and there remain substantial uncertainties and caveats, our observations are consistent with a scenario in which cloud fragmentation and global star formation are secularly suppressed in gas rich high-z disks from the inside out, as the central stellar mass density of the disks grows.
We exploit the deep resolved Halpha kinematic data from the KMOS^3D and SINS/zC-SINF surveys to examine the largely unexplored outer disk kinematics of star-forming galaxies (SFGs) out to the peak of cosmic star formation. Our sample contains 101 SFG s representative of the more massive (9.3 < log(M*/Msun) < 11.5) main sequence population at 0.6<z<2.6. Through a novel stacking approach we are able to constrain a representative rotation curve extending out to ~4 effective radii. This average rotation curve exhibits a significant drop in rotation velocity beyond the turnover, with a slope of Delta(V)/Delta(R) = $-0.26^{+0.10}_{-0.09}$ in units of normalized coordinates V/V_max and R/R_turn. This result confirms that the fall-off seen previously in some individual galaxies is a common feature of our sample of high-z disks. We show that this outer fall-off strikingly deviates from the flat or mildly rising rotation curves of local spiral galaxies of similar masses. We furthermore compare our data with models including baryons and dark matter demonstrating that the falling stacked rotation curve can be explained by a high mass fraction of baryons relative to the total dark matter halo (m_d>~0.05) in combination with a sizeable level of pressure support in the outer disk. These findings are in agreement with recent studies demonstrating that star-forming disks at high redshift are strongly baryon dominated within the disk scale, and furthermore suggest that pressure gradients caused by large turbulent gas motions are present even in their outer disks. We demonstrate that these results are largely independent of our model assumptions such as the presence of a central stellar bulge, the effect of adiabatic contraction at fixed m_d, and variations in the concentration parameter.
We present evidence of large-scale outflows from three low-mass (log(M/M_sun)~9.75) star-forming (SFR >4 M_sun/yr) galaxies observed at z=1.24, z=1.35 and z=1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical dist ance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W_r>0.8A) Mg II absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the H-alpha emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well-exceeds 0.1 M_sun/yr/kpc^2, the typical threshold for starburst galaxies in the local Universe. From a small but complete parallel census of the 0.65<z<2.6 galaxies with H_140<24 proximate to the quasar sight line, we detect Mg II absorption associated with galaxies extending to physical distances of 130 kpc. We determine that the W_r>0.8A Mg II covering fraction of star-forming galaxies at 1<z<2 may be as large as unity on scales extending to at least 60 kpc, providing early constraints on the typical extent of starburst-driven winds around galaxies at this redshift. Our observations additionally suggest that the azimuthal distribution of W_r>0.4A Mg II absorbing gas around star-forming galaxies may evolve from z~2 to the present, consistent with recent observations of an increasing collimation of star formation-driven outflows with time from z~3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا