ﻻ يوجد ملخص باللغة العربية
We study the facilitated totally asymmetric exclusion process on the one dimensional integer lattice. We investigate the invariant measures and the limiting behavior of the process. We mainly derive the limiting distribution of the process when the initial distribution is the Bernoulli product measure with density $1/2$. We also prove that in the low density regime, the system finally converges to an absorbing state.
Place an obstacle with probability $1-p$ independently at each vertex of $mathbb Z^d$ and consider a simple symmetric random walk that is killed upon hitting one of the obstacles. For $d geq 2$ and $p$ strictly above the critical threshold for site p
The relaxation time limit of the one-point distribution of the spatially periodic totally asymmetric simple exclusion process is expected to be the universal one point distribution for the models in the KPZ universality class in a periodic domain. Un
Consider two high-dimensional random vectors $widetilde{mathbf x}inmathbb R^p$ and $widetilde{mathbf y}inmathbb R^q$ with finite rank correlations. More precisely, suppose that $widetilde{mathbf x}=mathbf x+Amathbf z$ and $widetilde{mathbf y}=mathbf
We substantially refine asymptotic logarithmic upper bounds produced by Svante Janson (2015) on the right tail of the limiting QuickSort distribution function $F$ and by Fill and Hung (2018) on the right tails of the corresponding density $f$ and of
In a continuous-time setting, Fill (2010) proved, for a large class of probabilistic sources, that the number of symbol comparisons used by QuickSort, when centered by subtracting the mean and scaled by dividing by time, has a limiting distribution,