ﻻ يوجد ملخص باللغة العربية
Axion-like particles (ALPs) are pseudo Nambu-Goldstone bosons of spontaneously broken global symmetries in high-energy extensions of the Standard Model (SM). This makes them a prime target for future experiments aiming to discover new physics which addresses some of the open questions of the SM. While future high-precision experiments can discover ALPs with masses well below the GeV scale, heavier ALPs can be searched for at future high-energy lepton and hadron colliders. We discuss the reach of the different proposed colliders, focusing on resonant ALP production, ALP production in the decay of heavy SM resonances, and associate ALP production with photons, Z bosons or Higgs bosons. We consider the leading effective operators mediating interactions between the ALP and SM particles and discuss search strategies for ALPs decaying promptly as well as ALPs with delayed decays. Projections for the high-luminosity run of the LHC and its high-energy upgrade, CLIC, the future $e^+e^-$ ring-colliders CEPC and FCC-ee, the future pp colliders SPPC and FCC-hh, and for the MATHUSLA surface array are presented. We further discuss the constraining power of future measurements of electroweak precision parameters on the relevant ALP couplings.
We investigate the prospects for discovering axion-like particles (ALPs) via a light-by-light (LBL) scattering at two colliders, the future circular collider (FCC-ee) and circular electron-positron collider (CEPC). The protexttt{mi}sing sensitivities
Axion-like particles (ALPs) provide a promising direction in the search for new physics, while a wide range of models incorporate ALPs. We point out that future neutrino experiments, such as DUNE, possess competitive sensitivity to ALP signals. The h
Various types of electroweak-interacting particles, which have non-trivial charges under the $mathrm{SU}(2)_L times mathrm{U}(1)_Y$ gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton
There are broadly three channels to probe axion-like particles (ALPs) produced in the laboratory: through their subsequent decay to Standard Model (SM) particles, their scattering with SM particles, or their subsequent conversion to photons. Decay an
We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need